# Store (Long-term Memory) Long-term memory for sharing information across multiple threads. ## Overview Checkpointer only saves state within a single thread. To share information across multiple threads, use **Store**. ## Checkpointer vs Store | Feature | Checkpointer | Store | |---------|-------------|-------| | Scope | Single thread | All threads | | Purpose | Conversation state | User information | | Auto-save | Yes | No (manual) | | Search | thread_id | Namespace | ## Basic Usage ```python from langgraph.store.memory import InMemoryStore # Create Store store = InMemoryStore() # Save user information store.put( namespace=("users", "user-123"), key="preferences", value={ "language": "en", "theme": "dark", "notifications": True } ) # Retrieve user information user_prefs = store.get(("users", "user-123"), "preferences") ``` ## Namespace Namespaces are grouped by **tuples**: ```python # User information ("users", user_id) # Session information ("sessions", session_id) # Project information ("projects", project_id, "documents") # Hierarchical structure ("organization", org_id, "department", dept_id) ``` ## Store Operations ### Save ```python store.put( namespace=("users", "alice"), key="profile", value={ "name": "Alice", "email": "alice@example.com", "joined": "2024-01-01" } ) ``` ### Retrieve ```python # Single item profile = store.get(("users", "alice"), "profile") # All items in namespace items = store.search(("users", "alice")) ``` ### Search ```python # Filter by namespace all_users = store.search(("users",)) # Filter by key profiles = store.search(("users",), filter={"key": "profile"}) ``` ### Delete ```python # Single item store.delete(("users", "alice"), "profile") # Entire namespace store.delete_namespace(("users", "alice")) ``` ## Integration with Graph ```python from langgraph.store.memory import InMemoryStore store = InMemoryStore() # Integrate Store with graph graph = builder.compile( checkpointer=checkpointer, store=store ) # Use Store within nodes def personalized_node(state: State, *, store): user_id = state["user_id"] # Get user preferences prefs = store.get(("users", user_id), "preferences") # Process based on preferences if prefs and prefs.value.get("language") == "en": response = generate_english_response(state) else: response = generate_default_response(state) return {"response": response} ``` ## Semantic Search Store implementations with vector search capability: ```python from langgraph.store.memory import InMemoryStore store = InMemoryStore(index={"embed": True}) # Save documents (automatically vectorized) store.put( ("documents", "doc-1"), "content", {"text": "LangGraph is an agent framework"} ) # Semantic search results = store.search( ("documents",), query="agent development" ) ``` ## Practical Example: User Profile ```python class ProfileState(TypedDict): user_id: str messages: Annotated[list, add_messages] def save_user_info(state: ProfileState, *, store): """Extract and save user information from conversation""" messages = state["messages"] user_id = state["user_id"] # Extract information with LLM info = extract_user_info(messages) if info: # Save to Store current = store.get(("users", user_id), "profile") if current: # Merge with existing information updated = {**current.value, **info} else: updated = info store.put( ("users", user_id), "profile", updated ) return {} def personalized_response(state: ProfileState, *, store): """Personalize using user information""" user_id = state["user_id"] # Get user information profile = store.get(("users", user_id), "profile") if profile: context = f"User context: {profile.value}" messages = [ {"role": "system", "content": context}, *state["messages"] ] else: messages = state["messages"] response = llm.invoke(messages) return {"messages": [response]} ``` ## Practical Example: Knowledge Base ```python def query_knowledge_base(state: State, *, store): """Search for knowledge related to question""" query = state["messages"][-1].content # Semantic search relevant_docs = store.search( ("knowledge",), query=query, limit=3 ) # Add relevant information to context context = "\n".join([ doc.value["text"] for doc in relevant_docs ]) # Pass to LLM response = llm.invoke([ {"role": "system", "content": f"Context:\n{context}"}, *state["messages"] ]) return {"messages": [response]} ``` ## Store Implementations ### InMemoryStore ```python from langgraph.store.memory import InMemoryStore store = InMemoryStore() ``` ### Custom Store ```python from langgraph.store.base import BaseStore class RedisStore(BaseStore): def __init__(self, redis_client): self.redis = redis_client def put(self, namespace, key, value): ns_key = f"{':'.join(namespace)}:{key}" self.redis.set(ns_key, json.dumps(value)) def get(self, namespace, key): ns_key = f"{':'.join(namespace)}:{key}" data = self.redis.get(ns_key) return json.loads(data) if data else None def search(self, namespace, filter=None): pattern = f"{':'.join(namespace)}:*" keys = self.redis.keys(pattern) return [self.get_by_key(k) for k in keys] ``` ## Best Practices 1. **Namespace Design**: Hierarchical and meaningful structure 2. **Key Naming**: Clear and consistent naming conventions 3. **Data Size**: Store references only for large data 4. **Cleanup**: Periodic deletion of old data ## Summary Store is long-term memory for sharing information across multiple threads. Use it for persisting user profiles, knowledge bases, settings, etc. ## Related Pages - [03_memory_management_checkpointer.md](03_memory_management_checkpointer.md) - Differences from short-term memory - [03_memory_management_persistence.md](03_memory_management_persistence.md) - Persistence basics