# Prompt Optimization Guide A comprehensive guide for effectively optimizing prompts in LangGraph nodes. ## 📚 Table of Contents This guide is divided into the following sections: ### 1. [Prompt Optimization Principles](./prompt_principles.md) Learn the fundamental principles for designing prompts. ### 2. [Prompt Optimization Techniques](./prompt_techniques.md) Provides a collection of practical optimization techniques (10 techniques). ### 3. [Optimization Priorities](./prompt_priorities.md) Explains how to apply optimization techniques in order of improvement impact. ## 🎯 Quick Start ### First-Time Optimization 1. **[Understand the Principles](./prompt_principles.md)** - Learn the basics of clarity, structure, and specificity 2. **[Start with High-Impact Techniques](./prompt_priorities.md)** - Few-Shot Examples, output format structuring, parameter tuning 3. **[Review Technique Details](./prompt_techniques.md)** - Implementation methods and effects of each technique ### Improving Existing Prompts 1. **Measure Baseline** - Record current performance 2. **[Refer to Priority Guide](./prompt_priorities.md)** - Select the most impactful improvements 3. **[Apply Techniques](./prompt_techniques.md)** - Implement one at a time and measure effects 4. **Iterate** - Repeat the cycle of measure, implement, validate ## 📖 Related Documentation - **[Prompt Optimization Examples](./examples.md)** - Before/After comparison examples and code templates - **[SKILL.md](./SKILL.md)** - Overview and usage of the Fine-tune skill - **[evaluation.md](./evaluation.md)** - Evaluation criteria design and measurement methods ## 💡 Best Practices For effective prompt optimization: 1. ✅ **Measurement-Driven**: Evaluate all changes quantitatively 2. ✅ **Incremental Improvement**: One change at a time, measure, validate 3. ✅ **Cost-Conscious**: Optimize with model selection, caching, max_tokens 4. ✅ **Task-Appropriate**: Select techniques based on task complexity 5. ✅ **Iterative Approach**: Maintain continuous improvement cycles ## 🔍 Troubleshooting ### Low Prompt Quality → Review [Prompt Optimization Principles](./prompt_principles.md) ### Insufficient Accuracy → Apply [Few-Shot Examples](./prompt_techniques.md#technique-1-few-shot-examples) or [Chain-of-Thought](./prompt_techniques.md#technique-2-chain-of-thought) ### High Latency → Implement [Temperature/Max Tokens Adjustment](./prompt_techniques.md#technique-4-temperature-and-max-tokens-adjustment) or [Output Format Structuring](./prompt_techniques.md#technique-3-output-format-structuring) ### High Cost → Introduce [Model Selection Optimization](./prompt_techniques.md#technique-10-model-selection) or [Prompt Caching](./prompt_techniques.md#technique-6-prompt-caching) --- **💡 Tip**: For before/after prompt comparison examples and code templates, refer to [examples.md](examples.md#phase-3-iterative-improvement-examples).