Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:45:58 +08:00
commit 4b6db3349f
68 changed files with 15165 additions and 0 deletions

View File

@@ -0,0 +1,127 @@
# Fine-Tuning Workflow Details
Detailed workflow and practical guidelines for executing fine-tuning of LangGraph applications.
**💡 Tip**: For concrete code examples and templates you can copy and paste, refer to [examples.md](examples.md).
## 📋 Workflow Overview
```
┌─────────────────────────────────────────────────────────────┐
│ Phase 1: Preparation and Analysis │
├─────────────────────────────────────────────────────────────┤
│ 1. Read fine-tune.md → Understand goals and criteria │
│ 2. Identify optimization targets with Serena → List LLM nodes│
│ 3. Create optimization list → Assess improvement potential │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Phase 2: Baseline Evaluation │
├─────────────────────────────────────────────────────────────┤
│ 4. Prepare evaluation environment → Test cases, scripts │
│ 5. Measure baseline → Run 3-5 times, collect statistics │
│ 6. Analyze results → Identify issues, assess improvement │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Phase 3: Iterative Improvement (Iteration Loop) │
├─────────────────────────────────────────────────────────────┤
│ 7. Prioritize → Select most effective improvement area │
│ 8. Implement improvements → Optimize prompts, adjust params │
│ 9. Post-improvement evaluation → Re-evaluate same conditions│
│ 10. Compare results → Measure improvement, decide next step │
│ 11. Continue decision → Goal met? Yes → Phase 4 / No → Next │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Phase 4: Completion and Documentation │
├─────────────────────────────────────────────────────────────┤
│ 12. Create final evaluation report → Summary of improvements│
│ 13. Commit code → Version control and documentation update │
└─────────────────────────────────────────────────────────────┘
```
## 📚 Phase-by-Phase Detailed Guide
### [Phase 1: Preparation and Analysis](./workflow_phase1.md)
Clarify optimization direction and identify targets for improvement:
- **Step 1**: Read and understand fine-tune.md
- **Step 2**: Identify optimization targets with Serena MCP
- **Step 3**: Create optimization target list
**Time Required**: 30 minutes - 1 hour
### [Phase 2: Baseline Evaluation](./workflow_phase2.md)
Quantitatively measure current performance:
- **Step 4**: Prepare evaluation environment
- **Step 5**: Measure baseline (3-5 runs)
- **Step 6**: Analyze baseline results
**Time Required**: 1-2 hours
### [Phase 3: Iterative Improvement](./workflow_phase3.md)
Data-driven, incremental prompt optimization:
- **Step 7**: Prioritization
- **Step 8**: Implement improvements
- **Step 9**: Post-improvement evaluation
- **Step 10**: Compare results
- **Step 11**: Continue decision
**Time Required**: 1-2 hours per iteration × number of iterations (typically 3-5)
### [Phase 4: Completion and Documentation](./workflow_phase4.md)
Record final results and commit code:
- **Step 12**: Create final evaluation report
- **Step 13**: Commit code and update documentation
**Time Required**: 30 minutes - 1 hour
## 🎯 Workflow Execution Points
### For First-Time Fine-Tuning
1. **Start from Phase 1 in order**: Execute all phases without skipping
2. **Create documentation**: Record results from each phase
3. **Start small**: Experiment with a small number of test cases initially
### Continuous Fine-Tuning
1. **Start from Phase 2**: Measure new baseline
2. **Repeat Phase 3**: Continuous improvement cycle
3. **Consider automation**: Build evaluation pipeline
## 📊 Principles for Success
1. **Data-Driven**: Base all decisions on measurement results
2. **Incremental Improvement**: One change at a time, measure, verify
3. **Documentation**: Record results and learnings from each phase
4. **Statistical Verification**: Run multiple times to confirm significance
## 🔗 Related Documents
- **[Example Collection](./examples.md)** - Code examples and templates for each phase
- **[Evaluation Methods](./evaluation.md)** - Details on evaluation metrics and statistical analysis
- **[Prompt Optimization](./prompt_optimization.md)** - Detailed optimization techniques
- **[SKILL.md](./SKILL.md)** - Overview of the Fine-tune skill
## 💡 Troubleshooting
### Cannot find optimization targets in Phase 1
→ Check search patterns in [workflow_phase1.md#step-2](./workflow_phase1.md#step-2-identify-optimization-targets-with-serena-mcp)
### Evaluation script fails in Phase 2
→ Check checklist in [workflow_phase2.md#step-4](./workflow_phase2.md#step-4-prepare-evaluation-environment)
### No improvement effect in Phase 3
→ Review priority matrix in [workflow_phase3.md#step-7](./workflow_phase3.md#step-7-prioritization)
### Report creation takes too long in Phase 4
→ Utilize templates in [workflow_phase4.md#step-12](./workflow_phase4.md#step-12-create-final-evaluation-report)
---
Following this workflow enables:
- ✅ Systematic fine-tuning process execution
- ✅ Data-driven decision making
- ✅ Continuous improvement and verification
- ✅ Complete documentation and traceability