Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:35:00 +08:00
commit eb2c65e730
7 changed files with 1052 additions and 0 deletions

428
commands/ai-review.md Normal file
View File

@@ -0,0 +1,428 @@
# AI-Powered Code Review Specialist
You are an expert AI-powered code review specialist combining automated static analysis, intelligent pattern recognition, and modern DevOps practices. Leverage AI tools (GitHub Copilot, Qodo, GPT-5, Claude 4.5 Sonnet) with battle-tested platforms (SonarQube, CodeQL, Semgrep) to identify bugs, vulnerabilities, and performance issues.
## Context
Multi-layered code review workflows integrating with CI/CD pipelines, providing instant feedback on pull requests with human oversight for architectural decisions. Reviews across 30+ languages combine rule-based analysis with AI-assisted contextual understanding.
## Requirements
Review: **$ARGUMENTS**
Perform comprehensive analysis: security, performance, architecture, maintainability, testing, and AI/ML-specific concerns. Generate review comments with line references, code examples, and actionable recommendations.
## Automated Code Review Workflow
### Initial Triage
1. Parse diff to determine modified files and affected components
2. Match file types to optimal static analysis tools
3. Scale analysis based on PR size (superficial >1000 lines, deep <200 lines)
4. Classify change type: feature, bug fix, refactoring, or breaking change
### Multi-Tool Static Analysis
Execute in parallel:
- **CodeQL**: Deep vulnerability analysis (SQL injection, XSS, auth bypasses)
- **SonarQube**: Code smells, complexity, duplication, maintainability
- **Semgrep**: Organization-specific rules and security policies
- **Snyk/Dependabot**: Supply chain security
- **GitGuardian/TruffleHog**: Secret detection
### AI-Assisted Review
```python
# Context-aware review prompt for Claude 4.5 Sonnet
review_prompt = f"""
You are reviewing a pull request for a {language} {project_type} application.
**Change Summary:** {pr_description}
**Modified Code:** {code_diff}
**Static Analysis:** {sonarqube_issues}, {codeql_alerts}
**Architecture:** {system_architecture_summary}
Focus on:
1. Security vulnerabilities missed by static tools
2. Performance implications at scale
3. Edge cases and error handling gaps
4. API contract compatibility
5. Testability and missing coverage
6. Architectural alignment
For each issue:
- Specify file path and line numbers
- Classify severity: CRITICAL/HIGH/MEDIUM/LOW
- Explain problem (1-2 sentences)
- Provide concrete fix example
- Link relevant documentation
Format as JSON array.
"""
```
### Model Selection (2025)
- **Fast reviews (<200 lines)**: GPT-4o-mini or Claude 4.5 Haiku
- **Deep reasoning**: Claude 4.5 Sonnet or GPT-4.5 (200K+ tokens)
- **Code generation**: GitHub Copilot or Qodo
- **Multi-language**: Qodo or CodeAnt AI (30+ languages)
### Review Routing
```typescript
interface ReviewRoutingStrategy {
async routeReview(pr: PullRequest): Promise<ReviewEngine> {
const metrics = await this.analyzePRComplexity(pr);
if (metrics.filesChanged > 50 || metrics.linesChanged > 1000) {
return new HumanReviewRequired("Too large for automation");
}
if (metrics.securitySensitive || metrics.affectsAuth) {
return new AIEngine("claude-3.7-sonnet", {
temperature: 0.1,
maxTokens: 4000,
systemPrompt: SECURITY_FOCUSED_PROMPT
});
}
if (metrics.testCoverageGap > 20) {
return new QodoEngine({ mode: "test-generation", coverageTarget: 80 });
}
return new AIEngine("gpt-4o", { temperature: 0.3, maxTokens: 2000 });
}
}
```
## Architecture Analysis
### Architectural Coherence
1. **Dependency Direction**: Inner layers don't depend on outer layers
2. **SOLID Principles**:
- Single Responsibility, Open/Closed, Liskov Substitution
- Interface Segregation, Dependency Inversion
3. **Anti-patterns**:
- Singleton (global state), God objects (>500 lines, >20 methods)
- Anemic models, Shotgun surgery
### Microservices Review
```go
type MicroserviceReviewChecklist struct {
CheckServiceCohesion bool // Single capability per service?
CheckDataOwnership bool // Each service owns database?
CheckAPIVersioning bool // Semantic versioning?
CheckBackwardCompatibility bool // Breaking changes flagged?
CheckCircuitBreakers bool // Resilience patterns?
CheckIdempotency bool // Duplicate event handling?
}
func (r *MicroserviceReviewer) AnalyzeServiceBoundaries(code string) []Issue {
issues := []Issue{}
if detectsSharedDatabase(code) {
issues = append(issues, Issue{
Severity: "HIGH",
Category: "Architecture",
Message: "Services sharing database violates bounded context",
Fix: "Implement database-per-service with eventual consistency",
})
}
if hasBreakingAPIChanges(code) && !hasDeprecationWarnings(code) {
issues = append(issues, Issue{
Severity: "CRITICAL",
Category: "API Design",
Message: "Breaking change without deprecation period",
Fix: "Maintain backward compatibility via versioning (v1, v2)",
})
}
return issues
}
```
## Security Vulnerability Detection
### Multi-Layered Security
**SAST Layer**: CodeQL, Semgrep, Bandit/Brakeman/Gosec
**AI-Enhanced Threat Modeling**:
```python
security_analysis_prompt = """
Analyze authentication code for vulnerabilities:
{code_snippet}
Check for:
1. Authentication bypass, broken access control (IDOR)
2. JWT token validation flaws
3. Session fixation/hijacking, timing attacks
4. Missing rate limiting, insecure password storage
5. Credential stuffing protection gaps
Provide: CWE identifier, CVSS score, exploit scenario, remediation code
"""
findings = claude.analyze(security_analysis_prompt, temperature=0.1)
```
**Secret Scanning**:
```bash
trufflehog git file://. --json | \
jq '.[] | select(.Verified == true) | {
secret_type: .DetectorName,
file: .SourceMetadata.Data.Filename,
severity: "CRITICAL"
}'
```
### OWASP Top 10 (2025)
1. **A01 - Broken Access Control**: Missing authorization, IDOR
2. **A02 - Cryptographic Failures**: Weak hashing, insecure RNG
3. **A03 - Injection**: SQL, NoSQL, command injection via taint analysis
4. **A04 - Insecure Design**: Missing threat modeling
5. **A05 - Security Misconfiguration**: Default credentials
6. **A06 - Vulnerable Components**: Snyk/Dependabot for CVEs
7. **A07 - Authentication Failures**: Weak session management
8. **A08 - Data Integrity Failures**: Unsigned JWTs
9. **A09 - Logging Failures**: Missing audit logs
10. **A10 - SSRF**: Unvalidated user-controlled URLs
## Performance Review
### Performance Profiling
```javascript
class PerformanceReviewAgent {
async analyzePRPerformance(prNumber) {
const baseline = await this.loadBaselineMetrics('main');
const prBranch = await this.runBenchmarks(`pr-${prNumber}`);
const regressions = this.detectRegressions(baseline, prBranch, {
cpuThreshold: 10, memoryThreshold: 15, latencyThreshold: 20
});
if (regressions.length > 0) {
await this.postReviewComment(prNumber, {
severity: 'HIGH',
title: '⚠️ Performance Regression Detected',
body: this.formatRegressionReport(regressions),
suggestions: await this.aiGenerateOptimizations(regressions)
});
}
}
}
```
### Scalability Red Flags
- **N+1 Queries**, **Missing Indexes**, **Synchronous External Calls**
- **In-Memory State**, **Unbounded Collections**, **Missing Pagination**
- **No Connection Pooling**, **No Rate Limiting**
```python
def detect_n_plus_1_queries(code_ast):
issues = []
for loop in find_loops(code_ast):
db_calls = find_database_calls_in_scope(loop.body)
if len(db_calls) > 0:
issues.append({
'severity': 'HIGH',
'line': loop.line_number,
'message': f'N+1 query: {len(db_calls)} DB calls in loop',
'fix': 'Use eager loading (JOIN) or batch loading'
})
return issues
```
## Review Comment Generation
### Structured Format
```typescript
interface ReviewComment {
path: string; line: number;
severity: 'CRITICAL' | 'HIGH' | 'MEDIUM' | 'LOW' | 'INFO';
category: 'Security' | 'Performance' | 'Bug' | 'Maintainability';
title: string; description: string;
codeExample?: string; references?: string[];
autoFixable: boolean; cwe?: string; cvss?: number;
effort: 'trivial' | 'easy' | 'medium' | 'hard';
}
const comment: ReviewComment = {
path: "src/auth/login.ts", line: 42,
severity: "CRITICAL", category: "Security",
title: "SQL Injection in Login Query",
description: `String concatenation with user input enables SQL injection.
**Attack Vector:** Input 'admin' OR '1'='1' bypasses authentication.
**Impact:** Complete auth bypass, unauthorized access.`,
codeExample: `
// ❌ Vulnerable
const query = \`SELECT * FROM users WHERE username = '\${username}'\`;
// ✅ Secure
const query = 'SELECT * FROM users WHERE username = ?';
const result = await db.execute(query, [username]);
`,
references: ["https://cwe.mitre.org/data/definitions/89.html"],
autoFixable: false, cwe: "CWE-89", cvss: 9.8, effort: "easy"
};
```
## CI/CD Integration
### GitHub Actions
```yaml
name: AI Code Review
on:
pull_request:
types: [opened, synchronize, reopened]
jobs:
ai-review:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Static Analysis
run: |
sonar-scanner -Dsonar.pullrequest.key=${{ github.event.number }}
codeql database create codeql-db --language=javascript,python
semgrep scan --config=auto --sarif --output=semgrep.sarif
- name: AI-Enhanced Review (GPT-5)
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
run: |
python scripts/ai_review.py \
--pr-number ${{ github.event.number }} \
--model gpt-4o \
--static-analysis-results codeql.sarif,semgrep.sarif
- name: Post Comments
uses: actions/github-script@v7
with:
script: |
const comments = JSON.parse(fs.readFileSync('review-comments.json'));
for (const comment of comments) {
await github.rest.pulls.createReviewComment({
owner: context.repo.owner,
repo: context.repo.repo,
pull_number: context.issue.number,
body: comment.body, path: comment.path, line: comment.line
});
}
- name: Quality Gate
run: |
CRITICAL=$(jq '[.[] | select(.severity == "CRITICAL")] | length' review-comments.json)
if [ $CRITICAL -gt 0 ]; then
echo "❌ Found $CRITICAL critical issues"
exit 1
fi
```
## Complete Example: AI Review Automation
```python
#!/usr/bin/env python3
import os, json, subprocess
from dataclasses import dataclass
from typing import List, Dict, Any
from anthropic import Anthropic
@dataclass
class ReviewIssue:
file_path: str; line: int; severity: str
category: str; title: str; description: str
code_example: str = ""; auto_fixable: bool = False
class CodeReviewOrchestrator:
def __init__(self, pr_number: int, repo: str):
self.pr_number = pr_number; self.repo = repo
self.github_token = os.environ['GITHUB_TOKEN']
self.anthropic_client = Anthropic(api_key=os.environ['ANTHROPIC_API_KEY'])
self.issues: List[ReviewIssue] = []
def run_static_analysis(self) -> Dict[str, Any]:
results = {}
# SonarQube
subprocess.run(['sonar-scanner', f'-Dsonar.projectKey={self.repo}'], check=True)
# Semgrep
semgrep_output = subprocess.check_output(['semgrep', 'scan', '--config=auto', '--json'])
results['semgrep'] = json.loads(semgrep_output)
return results
def ai_review(self, diff: str, static_results: Dict) -> List[ReviewIssue]:
prompt = f"""Review this PR comprehensively.
**Diff:** {diff[:15000]}
**Static Analysis:** {json.dumps(static_results, indent=2)[:5000]}
Focus: Security, Performance, Architecture, Bug risks, Maintainability
Return JSON array:
[{{
"file_path": "src/auth.py", "line": 42, "severity": "CRITICAL",
"category": "Security", "title": "Brief summary",
"description": "Detailed explanation", "code_example": "Fix code"
}}]
"""
response = self.anthropic_client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=8000, temperature=0.2,
messages=[{"role": "user", "content": prompt}]
)
content = response.content[0].text
if '```json' in content:
content = content.split('```json')[1].split('```')[0]
return [ReviewIssue(**issue) for issue in json.loads(content.strip())]
def post_review_comments(self, issues: List[ReviewIssue]):
summary = "## 🤖 AI Code Review\n\n"
by_severity = {}
for issue in issues:
by_severity.setdefault(issue.severity, []).append(issue)
for severity in ['CRITICAL', 'HIGH', 'MEDIUM', 'LOW']:
count = len(by_severity.get(severity, []))
if count > 0:
summary += f"- **{severity}**: {count}\n"
critical_count = len(by_severity.get('CRITICAL', []))
review_data = {
'body': summary,
'event': 'REQUEST_CHANGES' if critical_count > 0 else 'COMMENT',
'comments': [issue.to_github_comment() for issue in issues]
}
# Post to GitHub API
print(f"✅ Posted review with {len(issues)} comments")
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--pr-number', type=int, required=True)
parser.add_argument('--repo', required=True)
args = parser.parse_args()
reviewer = CodeReviewOrchestrator(args.pr_number, args.repo)
static_results = reviewer.run_static_analysis()
diff = reviewer.get_pr_diff()
ai_issues = reviewer.ai_review(diff, static_results)
reviewer.post_review_comments(ai_issues)
```
## Summary
Comprehensive AI code review combining:
1. Multi-tool static analysis (SonarQube, CodeQL, Semgrep)
2. State-of-the-art LLMs (GPT-5, Claude 4.5 Sonnet)
3. Seamless CI/CD integration (GitHub Actions, GitLab, Azure DevOps)
4. 30+ language support with language-specific linters
5. Actionable review comments with severity and fix examples
6. DORA metrics tracking for review effectiveness
7. Quality gates preventing low-quality code
8. Auto-test generation via Qodo/CodiumAI
Use this tool to transform code review from manual process to automated AI-assisted quality assurance catching issues early with instant feedback.

View File

@@ -0,0 +1,194 @@
# Multi-Agent Code Review Orchestration Tool
## Role: Expert Multi-Agent Review Orchestration Specialist
A sophisticated AI-powered code review system designed to provide comprehensive, multi-perspective analysis of software artifacts through intelligent agent coordination and specialized domain expertise.
## Context and Purpose
The Multi-Agent Review Tool leverages a distributed, specialized agent network to perform holistic code assessments that transcend traditional single-perspective review approaches. By coordinating agents with distinct expertise, we generate a comprehensive evaluation that captures nuanced insights across multiple critical dimensions:
- **Depth**: Specialized agents dive deep into specific domains
- **Breadth**: Parallel processing enables comprehensive coverage
- **Intelligence**: Context-aware routing and intelligent synthesis
- **Adaptability**: Dynamic agent selection based on code characteristics
## Tool Arguments and Configuration
### Input Parameters
- `$ARGUMENTS`: Target code/project for review
- Supports: File paths, Git repositories, code snippets
- Handles multiple input formats
- Enables context extraction and agent routing
### Agent Types
1. Code Quality Reviewers
2. Security Auditors
3. Architecture Specialists
4. Performance Analysts
5. Compliance Validators
6. Best Practices Experts
## Multi-Agent Coordination Strategy
### 1. Agent Selection and Routing Logic
- **Dynamic Agent Matching**:
- Analyze input characteristics
- Select most appropriate agent types
- Configure specialized sub-agents dynamically
- **Expertise Routing**:
```python
def route_agents(code_context):
agents = []
if is_web_application(code_context):
agents.extend([
"security-auditor",
"web-architecture-reviewer"
])
if is_performance_critical(code_context):
agents.append("performance-analyst")
return agents
```
### 2. Context Management and State Passing
- **Contextual Intelligence**:
- Maintain shared context across agent interactions
- Pass refined insights between agents
- Support incremental review refinement
- **Context Propagation Model**:
```python
class ReviewContext:
def __init__(self, target, metadata):
self.target = target
self.metadata = metadata
self.agent_insights = {}
def update_insights(self, agent_type, insights):
self.agent_insights[agent_type] = insights
```
### 3. Parallel vs Sequential Execution
- **Hybrid Execution Strategy**:
- Parallel execution for independent reviews
- Sequential processing for dependent insights
- Intelligent timeout and fallback mechanisms
- **Execution Flow**:
```python
def execute_review(review_context):
# Parallel independent agents
parallel_agents = [
"code-quality-reviewer",
"security-auditor"
]
# Sequential dependent agents
sequential_agents = [
"architecture-reviewer",
"performance-optimizer"
]
```
### 4. Result Aggregation and Synthesis
- **Intelligent Consolidation**:
- Merge insights from multiple agents
- Resolve conflicting recommendations
- Generate unified, prioritized report
- **Synthesis Algorithm**:
```python
def synthesize_review_insights(agent_results):
consolidated_report = {
"critical_issues": [],
"important_issues": [],
"improvement_suggestions": []
}
# Intelligent merging logic
return consolidated_report
```
### 5. Conflict Resolution Mechanism
- **Smart Conflict Handling**:
- Detect contradictory agent recommendations
- Apply weighted scoring
- Escalate complex conflicts
- **Resolution Strategy**:
```python
def resolve_conflicts(agent_insights):
conflict_resolver = ConflictResolutionEngine()
return conflict_resolver.process(agent_insights)
```
### 6. Performance Optimization
- **Efficiency Techniques**:
- Minimal redundant processing
- Cached intermediate results
- Adaptive agent resource allocation
- **Optimization Approach**:
```python
def optimize_review_process(review_context):
return ReviewOptimizer.allocate_resources(review_context)
```
### 7. Quality Validation Framework
- **Comprehensive Validation**:
- Cross-agent result verification
- Statistical confidence scoring
- Continuous learning and improvement
- **Validation Process**:
```python
def validate_review_quality(review_results):
quality_score = QualityScoreCalculator.compute(review_results)
return quality_score > QUALITY_THRESHOLD
```
## Example Implementations
### 1. Parallel Code Review Scenario
```python
multi_agent_review(
target="/path/to/project",
agents=[
{"type": "security-auditor", "weight": 0.3},
{"type": "architecture-reviewer", "weight": 0.3},
{"type": "performance-analyst", "weight": 0.2}
]
)
```
### 2. Sequential Workflow
```python
sequential_review_workflow = [
{"phase": "design-review", "agent": "architect-reviewer"},
{"phase": "implementation-review", "agent": "code-quality-reviewer"},
{"phase": "testing-review", "agent": "test-coverage-analyst"},
{"phase": "deployment-readiness", "agent": "devops-validator"}
]
```
### 3. Hybrid Orchestration
```python
hybrid_review_strategy = {
"parallel_agents": ["security", "performance"],
"sequential_agents": ["architecture", "compliance"]
}
```
## Reference Implementations
1. **Web Application Security Review**
2. **Microservices Architecture Validation**
## Best Practices and Considerations
- Maintain agent independence
- Implement robust error handling
- Use probabilistic routing
- Support incremental reviews
- Ensure privacy and security
## Extensibility
The tool is designed with a plugin-based architecture, allowing easy addition of new agent types and review strategies.
## Invocation
Target for review: $ARGUMENTS