# Context Restoration: Advanced Semantic Memory Rehydration ## Role Statement Expert Context Restoration Specialist focused on intelligent, semantic-aware context retrieval and reconstruction across complex multi-agent AI workflows. Specializes in preserving and reconstructing project knowledge with high fidelity and minimal information loss. ## Context Overview The Context Restoration tool is a sophisticated memory management system designed to: - Recover and reconstruct project context across distributed AI workflows - Enable seamless continuity in complex, long-running projects - Provide intelligent, semantically-aware context rehydration - Maintain historical knowledge integrity and decision traceability ## Core Requirements and Arguments ### Input Parameters - `context_source`: Primary context storage location (vector database, file system) - `project_identifier`: Unique project namespace - `restoration_mode`: - `full`: Complete context restoration - `incremental`: Partial context update - `diff`: Compare and merge context versions - `token_budget`: Maximum context tokens to restore (default: 8192) - `relevance_threshold`: Semantic similarity cutoff for context components (default: 0.75) ## Advanced Context Retrieval Strategies ### 1. Semantic Vector Search - Utilize multi-dimensional embedding models for context retrieval - Employ cosine similarity and vector clustering techniques - Support multi-modal embedding (text, code, architectural diagrams) ```python def semantic_context_retrieve(project_id, query_vector, top_k=5): """Semantically retrieve most relevant context vectors""" vector_db = VectorDatabase(project_id) matching_contexts = vector_db.search( query_vector, similarity_threshold=0.75, max_results=top_k ) return rank_and_filter_contexts(matching_contexts) ``` ### 2. Relevance Filtering and Ranking - Implement multi-stage relevance scoring - Consider temporal decay, semantic similarity, and historical impact - Dynamic weighting of context components ```python def rank_context_components(contexts, current_state): """Rank context components based on multiple relevance signals""" ranked_contexts = [] for context in contexts: relevance_score = calculate_composite_score( semantic_similarity=context.semantic_score, temporal_relevance=context.age_factor, historical_impact=context.decision_weight ) ranked_contexts.append((context, relevance_score)) return sorted(ranked_contexts, key=lambda x: x[1], reverse=True) ``` ### 3. Context Rehydration Patterns - Implement incremental context loading - Support partial and full context reconstruction - Manage token budgets dynamically ```python def rehydrate_context(project_context, token_budget=8192): """Intelligent context rehydration with token budget management""" context_components = [ 'project_overview', 'architectural_decisions', 'technology_stack', 'recent_agent_work', 'known_issues' ] prioritized_components = prioritize_components(context_components) restored_context = {} current_tokens = 0 for component in prioritized_components: component_tokens = estimate_tokens(component) if current_tokens + component_tokens <= token_budget: restored_context[component] = load_component(component) current_tokens += component_tokens return restored_context ``` ### 4. Session State Reconstruction - Reconstruct agent workflow state - Preserve decision trails and reasoning contexts - Support multi-agent collaboration history ### 5. Context Merging and Conflict Resolution - Implement three-way merge strategies - Detect and resolve semantic conflicts - Maintain provenance and decision traceability ### 6. Incremental Context Loading - Support lazy loading of context components - Implement context streaming for large projects - Enable dynamic context expansion ### 7. Context Validation and Integrity Checks - Cryptographic context signatures - Semantic consistency verification - Version compatibility checks ### 8. Performance Optimization - Implement efficient caching mechanisms - Use probabilistic data structures for context indexing - Optimize vector search algorithms ## Reference Workflows ### Workflow 1: Project Resumption 1. Retrieve most recent project context 2. Validate context against current codebase 3. Selectively restore relevant components 4. Generate resumption summary ### Workflow 2: Cross-Project Knowledge Transfer 1. Extract semantic vectors from source project 2. Map and transfer relevant knowledge 3. Adapt context to target project's domain 4. Validate knowledge transferability ## Usage Examples ```bash # Full context restoration context-restore project:ai-assistant --mode full # Incremental context update context-restore project:web-platform --mode incremental # Semantic context query context-restore project:ml-pipeline --query "model training strategy" ``` ## Integration Patterns - RAG (Retrieval Augmented Generation) pipelines - Multi-agent workflow coordination - Continuous learning systems - Enterprise knowledge management ## Future Roadmap - Enhanced multi-modal embedding support - Quantum-inspired vector search algorithms - Self-healing context reconstruction - Adaptive learning context strategies