Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:33:32 +08:00
commit a0a33681c5
8 changed files with 1343 additions and 0 deletions

124
commands/full-review.md Normal file
View File

@@ -0,0 +1,124 @@
Orchestrate comprehensive multi-dimensional code review using specialized review agents
[Extended thinking: This workflow performs an exhaustive code review by orchestrating multiple specialized agents in sequential phases. Each phase builds upon previous findings to create a comprehensive review that covers code quality, security, performance, testing, documentation, and best practices. The workflow integrates modern AI-assisted review tools, static analysis, security scanning, and automated quality metrics. Results are consolidated into actionable feedback with clear prioritization and remediation guidance. The phased approach ensures thorough coverage while maintaining efficiency through parallel agent execution where appropriate.]
## Review Configuration Options
- **--security-focus**: Prioritize security vulnerabilities and OWASP compliance
- **--performance-critical**: Emphasize performance bottlenecks and scalability issues
- **--tdd-review**: Include TDD compliance and test-first verification
- **--ai-assisted**: Enable AI-powered review tools (Copilot, Codium, Bito)
- **--strict-mode**: Fail review on any critical issues found
- **--metrics-report**: Generate detailed quality metrics dashboard
- **--framework [name]**: Apply framework-specific best practices (React, Spring, Django, etc.)
## Phase 1: Code Quality & Architecture Review
Use Task tool to orchestrate quality and architecture agents in parallel:
### 1A. Code Quality Analysis
- Use Task tool with subagent_type="code-reviewer"
- Prompt: "Perform comprehensive code quality review for: $ARGUMENTS. Analyze code complexity, maintainability index, technical debt, code duplication, naming conventions, and adherence to Clean Code principles. Integrate with SonarQube, CodeQL, and Semgrep for static analysis. Check for code smells, anti-patterns, and violations of SOLID principles. Generate cyclomatic complexity metrics and identify refactoring opportunities."
- Expected output: Quality metrics, code smell inventory, refactoring recommendations
- Context: Initial codebase analysis, no dependencies on other phases
### 1B. Architecture & Design Review
- Use Task tool with subagent_type="architect-review"
- Prompt: "Review architectural design patterns and structural integrity in: $ARGUMENTS. Evaluate microservices boundaries, API design, database schema, dependency management, and adherence to Domain-Driven Design principles. Check for circular dependencies, inappropriate coupling, missing abstractions, and architectural drift. Verify compliance with enterprise architecture standards and cloud-native patterns."
- Expected output: Architecture assessment, design pattern analysis, structural recommendations
- Context: Runs parallel with code quality analysis
## Phase 2: Security & Performance Review
Use Task tool with security and performance agents, incorporating Phase 1 findings:
### 2A. Security Vulnerability Assessment
- Use Task tool with subagent_type="security-auditor"
- Prompt: "Execute comprehensive security audit on: $ARGUMENTS. Perform OWASP Top 10 analysis, dependency vulnerability scanning with Snyk/Trivy, secrets detection with GitLeaks, input validation review, authentication/authorization assessment, and cryptographic implementation review. Include findings from Phase 1 architecture review: {phase1_architecture_context}. Check for SQL injection, XSS, CSRF, insecure deserialization, and configuration security issues."
- Expected output: Vulnerability report, CVE list, security risk matrix, remediation steps
- Context: Incorporates architectural vulnerabilities identified in Phase 1B
### 2B. Performance & Scalability Analysis
- Use Task tool with subagent_type="application-performance::performance-engineer"
- Prompt: "Conduct performance analysis and scalability assessment for: $ARGUMENTS. Profile code for CPU/memory hotspots, analyze database query performance, review caching strategies, identify N+1 problems, assess connection pooling, and evaluate asynchronous processing patterns. Consider architectural findings from Phase 1: {phase1_architecture_context}. Check for memory leaks, resource contention, and bottlenecks under load."
- Expected output: Performance metrics, bottleneck analysis, optimization recommendations
- Context: Uses architecture insights to identify systemic performance issues
## Phase 3: Testing & Documentation Review
Use Task tool for test and documentation quality assessment:
### 3A. Test Coverage & Quality Analysis
- Use Task tool with subagent_type="unit-testing::test-automator"
- Prompt: "Evaluate testing strategy and implementation for: $ARGUMENTS. Analyze unit test coverage, integration test completeness, end-to-end test scenarios, test pyramid adherence, and test maintainability. Review test quality metrics including assertion density, test isolation, mock usage, and flakiness. Consider security and performance test requirements from Phase 2: {phase2_security_context}, {phase2_performance_context}. Verify TDD practices if --tdd-review flag is set."
- Expected output: Coverage report, test quality metrics, testing gap analysis
- Context: Incorporates security and performance testing requirements from Phase 2
### 3B. Documentation & API Specification Review
- Use Task tool with subagent_type="code-documentation::docs-architect"
- Prompt: "Review documentation completeness and quality for: $ARGUMENTS. Assess inline code documentation, API documentation (OpenAPI/Swagger), architecture decision records (ADRs), README completeness, deployment guides, and runbooks. Verify documentation reflects actual implementation based on all previous phase findings: {phase1_context}, {phase2_context}. Check for outdated documentation, missing examples, and unclear explanations."
- Expected output: Documentation coverage report, inconsistency list, improvement recommendations
- Context: Cross-references all previous findings to ensure documentation accuracy
## Phase 4: Best Practices & Standards Compliance
Use Task tool to verify framework-specific and industry best practices:
### 4A. Framework & Language Best Practices
- Use Task tool with subagent_type="framework-migration::legacy-modernizer"
- Prompt: "Verify adherence to framework and language best practices for: $ARGUMENTS. Check modern JavaScript/TypeScript patterns, React hooks best practices, Python PEP compliance, Java enterprise patterns, Go idiomatic code, or framework-specific conventions (based on --framework flag). Review package management, build configuration, environment handling, and deployment practices. Include all quality issues from previous phases: {all_previous_contexts}."
- Expected output: Best practices compliance report, modernization recommendations
- Context: Synthesizes all previous findings for framework-specific guidance
### 4B. CI/CD & DevOps Practices Review
- Use Task tool with subagent_type="cicd-automation::deployment-engineer"
- Prompt: "Review CI/CD pipeline and DevOps practices for: $ARGUMENTS. Evaluate build automation, test automation integration, deployment strategies (blue-green, canary), infrastructure as code, monitoring/observability setup, and incident response procedures. Assess pipeline security, artifact management, and rollback capabilities. Consider all issues identified in previous phases that impact deployment: {all_critical_issues}."
- Expected output: Pipeline assessment, DevOps maturity evaluation, automation recommendations
- Context: Focuses on operationalizing fixes for all identified issues
## Consolidated Report Generation
Compile all phase outputs into comprehensive review report:
### Critical Issues (P0 - Must Fix Immediately)
- Security vulnerabilities with CVSS > 7.0
- Data loss or corruption risks
- Authentication/authorization bypasses
- Production stability threats
- Compliance violations (GDPR, PCI DSS, SOC2)
### High Priority (P1 - Fix Before Next Release)
- Performance bottlenecks impacting user experience
- Missing critical test coverage
- Architectural anti-patterns causing technical debt
- Outdated dependencies with known vulnerabilities
- Code quality issues affecting maintainability
### Medium Priority (P2 - Plan for Next Sprint)
- Non-critical performance optimizations
- Documentation gaps and inconsistencies
- Code refactoring opportunities
- Test quality improvements
- DevOps automation enhancements
### Low Priority (P3 - Track in Backlog)
- Style guide violations
- Minor code smell issues
- Nice-to-have documentation updates
- Cosmetic improvements
## Success Criteria
Review is considered successful when:
- All critical security vulnerabilities are identified and documented
- Performance bottlenecks are profiled with remediation paths
- Test coverage gaps are mapped with priority recommendations
- Architecture risks are assessed with mitigation strategies
- Documentation reflects actual implementation state
- Framework best practices compliance is verified
- CI/CD pipeline supports safe deployment of reviewed code
- Clear, actionable feedback is provided for all findings
- Metrics dashboard shows improvement trends
- Team has clear prioritized action plan for remediation
Target: $ARGUMENTS

697
commands/pr-enhance.md Normal file
View File

@@ -0,0 +1,697 @@
# Pull Request Enhancement
You are a PR optimization expert specializing in creating high-quality pull requests that facilitate efficient code reviews. Generate comprehensive PR descriptions, automate review processes, and ensure PRs follow best practices for clarity, size, and reviewability.
## Context
The user needs to create or improve pull requests with detailed descriptions, proper documentation, test coverage analysis, and review facilitation. Focus on making PRs that are easy to review, well-documented, and include all necessary context.
## Requirements
$ARGUMENTS
## Instructions
### 1. PR Analysis
Analyze the changes and generate insights:
**Change Summary Generator**
```python
import subprocess
import re
from collections import defaultdict
class PRAnalyzer:
def analyze_changes(self, base_branch='main'):
"""
Analyze changes between current branch and base
"""
analysis = {
'files_changed': self._get_changed_files(base_branch),
'change_statistics': self._get_change_stats(base_branch),
'change_categories': self._categorize_changes(base_branch),
'potential_impacts': self._assess_impacts(base_branch),
'dependencies_affected': self._check_dependencies(base_branch)
}
return analysis
def _get_changed_files(self, base_branch):
"""Get list of changed files with statistics"""
cmd = f"git diff --name-status {base_branch}...HEAD"
result = subprocess.run(cmd.split(), capture_output=True, text=True)
files = []
for line in result.stdout.strip().split('\n'):
if line:
status, filename = line.split('\t', 1)
files.append({
'filename': filename,
'status': self._parse_status(status),
'category': self._categorize_file(filename)
})
return files
def _get_change_stats(self, base_branch):
"""Get detailed change statistics"""
cmd = f"git diff --shortstat {base_branch}...HEAD"
result = subprocess.run(cmd.split(), capture_output=True, text=True)
# Parse output like: "10 files changed, 450 insertions(+), 123 deletions(-)"
stats_pattern = r'(\d+) files? changed(?:, (\d+) insertions?\(\+\))?(?:, (\d+) deletions?\(-\))?'
match = re.search(stats_pattern, result.stdout)
if match:
files, insertions, deletions = match.groups()
return {
'files_changed': int(files),
'insertions': int(insertions or 0),
'deletions': int(deletions or 0),
'net_change': int(insertions or 0) - int(deletions or 0)
}
return {'files_changed': 0, 'insertions': 0, 'deletions': 0, 'net_change': 0}
def _categorize_file(self, filename):
"""Categorize file by type"""
categories = {
'source': ['.js', '.ts', '.py', '.java', '.go', '.rs'],
'test': ['test', 'spec', '.test.', '.spec.'],
'config': ['config', '.json', '.yml', '.yaml', '.toml'],
'docs': ['.md', 'README', 'CHANGELOG', '.rst'],
'styles': ['.css', '.scss', '.less'],
'build': ['Makefile', 'Dockerfile', '.gradle', 'pom.xml']
}
for category, patterns in categories.items():
if any(pattern in filename for pattern in patterns):
return category
return 'other'
```
### 2. PR Description Generation
Create comprehensive PR descriptions:
**Description Template Generator**
```python
def generate_pr_description(analysis, commits):
"""
Generate detailed PR description from analysis
"""
description = f"""
## Summary
{generate_summary(analysis, commits)}
## What Changed
{generate_change_list(analysis)}
## Why These Changes
{extract_why_from_commits(commits)}
## Type of Change
{determine_change_types(analysis)}
## How Has This Been Tested?
{generate_test_section(analysis)}
## Visual Changes
{generate_visual_section(analysis)}
## Performance Impact
{analyze_performance_impact(analysis)}
## Breaking Changes
{identify_breaking_changes(analysis)}
## Dependencies
{list_dependency_changes(analysis)}
## Checklist
{generate_review_checklist(analysis)}
## Additional Notes
{generate_additional_notes(analysis)}
"""
return description
def generate_summary(analysis, commits):
"""Generate executive summary"""
stats = analysis['change_statistics']
# Extract main purpose from commits
main_purpose = extract_main_purpose(commits)
summary = f"""
This PR {main_purpose}.
**Impact**: {stats['files_changed']} files changed ({stats['insertions']} additions, {stats['deletions']} deletions)
**Risk Level**: {calculate_risk_level(analysis)}
**Review Time**: ~{estimate_review_time(stats)} minutes
"""
return summary
def generate_change_list(analysis):
"""Generate categorized change list"""
changes_by_category = defaultdict(list)
for file in analysis['files_changed']:
changes_by_category[file['category']].append(file)
change_list = ""
icons = {
'source': '🔧',
'test': '',
'docs': '📝',
'config': '⚙️',
'styles': '🎨',
'build': '🏗️',
'other': '📁'
}
for category, files in changes_by_category.items():
change_list += f"\n### {icons.get(category, '📁')} {category.title()} Changes\n"
for file in files[:10]: # Limit to 10 files per category
change_list += f"- {file['status']}: `{file['filename']}`\n"
if len(files) > 10:
change_list += f"- ...and {len(files) - 10} more\n"
return change_list
```
### 3. Review Checklist Generation
Create automated review checklists:
**Smart Checklist Generator**
```python
def generate_review_checklist(analysis):
"""
Generate context-aware review checklist
"""
checklist = ["## Review Checklist\n"]
# General items
general_items = [
"Code follows project style guidelines",
"Self-review completed",
"Comments added for complex logic",
"No debugging code left",
"No sensitive data exposed"
]
# Add general items
checklist.append("### General")
for item in general_items:
checklist.append(f"- [ ] {item}")
# File-specific checks
file_types = {file['category'] for file in analysis['files_changed']}
if 'source' in file_types:
checklist.append("\n### Code Quality")
checklist.extend([
"- [ ] No code duplication",
"- [ ] Functions are focused and small",
"- [ ] Variable names are descriptive",
"- [ ] Error handling is comprehensive",
"- [ ] No performance bottlenecks introduced"
])
if 'test' in file_types:
checklist.append("\n### Testing")
checklist.extend([
"- [ ] All new code is covered by tests",
"- [ ] Tests are meaningful and not just for coverage",
"- [ ] Edge cases are tested",
"- [ ] Tests follow AAA pattern (Arrange, Act, Assert)",
"- [ ] No flaky tests introduced"
])
if 'config' in file_types:
checklist.append("\n### Configuration")
checklist.extend([
"- [ ] No hardcoded values",
"- [ ] Environment variables documented",
"- [ ] Backwards compatibility maintained",
"- [ ] Security implications reviewed",
"- [ ] Default values are sensible"
])
if 'docs' in file_types:
checklist.append("\n### Documentation")
checklist.extend([
"- [ ] Documentation is clear and accurate",
"- [ ] Examples are provided where helpful",
"- [ ] API changes are documented",
"- [ ] README updated if necessary",
"- [ ] Changelog updated"
])
# Security checks
if has_security_implications(analysis):
checklist.append("\n### Security")
checklist.extend([
"- [ ] No SQL injection vulnerabilities",
"- [ ] Input validation implemented",
"- [ ] Authentication/authorization correct",
"- [ ] No sensitive data in logs",
"- [ ] Dependencies are secure"
])
return '\n'.join(checklist)
```
### 4. Code Review Automation
Automate common review tasks:
**Automated Review Bot**
```python
class ReviewBot:
def perform_automated_checks(self, pr_diff):
"""
Perform automated code review checks
"""
findings = []
# Check for common issues
checks = [
self._check_console_logs,
self._check_commented_code,
self._check_large_functions,
self._check_todo_comments,
self._check_hardcoded_values,
self._check_missing_error_handling,
self._check_security_issues
]
for check in checks:
findings.extend(check(pr_diff))
return findings
def _check_console_logs(self, diff):
"""Check for console.log statements"""
findings = []
pattern = r'\+.*console\.(log|debug|info|warn|error)'
for file, content in diff.items():
matches = re.finditer(pattern, content, re.MULTILINE)
for match in matches:
findings.append({
'type': 'warning',
'file': file,
'line': self._get_line_number(match, content),
'message': 'Console statement found - remove before merging',
'suggestion': 'Use proper logging framework instead'
})
return findings
def _check_large_functions(self, diff):
"""Check for functions that are too large"""
findings = []
# Simple heuristic: count lines between function start and end
for file, content in diff.items():
if file.endswith(('.js', '.ts', '.py')):
functions = self._extract_functions(content)
for func in functions:
if func['lines'] > 50:
findings.append({
'type': 'suggestion',
'file': file,
'line': func['start_line'],
'message': f"Function '{func['name']}' is {func['lines']} lines long",
'suggestion': 'Consider breaking into smaller functions'
})
return findings
```
### 5. PR Size Optimization
Help split large PRs:
**PR Splitter Suggestions**
```python
def suggest_pr_splits(analysis):
"""
Suggest how to split large PRs
"""
stats = analysis['change_statistics']
# Check if PR is too large
if stats['files_changed'] > 20 or stats['insertions'] + stats['deletions'] > 1000:
suggestions = analyze_split_opportunities(analysis)
return f"""
## ⚠️ Large PR Detected
This PR changes {stats['files_changed']} files with {stats['insertions'] + stats['deletions']} total changes.
Large PRs are harder to review and more likely to introduce bugs.
### Suggested Splits:
{format_split_suggestions(suggestions)}
### How to Split:
1. Create feature branch from current branch
2. Cherry-pick commits for first logical unit
3. Create PR for first unit
4. Repeat for remaining units
```bash
# Example split workflow
git checkout -b feature/part-1
git cherry-pick <commit-hashes-for-part-1>
git push origin feature/part-1
# Create PR for part 1
git checkout -b feature/part-2
git cherry-pick <commit-hashes-for-part-2>
git push origin feature/part-2
# Create PR for part 2
```
"""
return ""
def analyze_split_opportunities(analysis):
"""Find logical units for splitting"""
suggestions = []
# Group by feature areas
feature_groups = defaultdict(list)
for file in analysis['files_changed']:
feature = extract_feature_area(file['filename'])
feature_groups[feature].append(file)
# Suggest splits
for feature, files in feature_groups.items():
if len(files) >= 5:
suggestions.append({
'name': f"{feature} changes",
'files': files,
'reason': f"Isolated changes to {feature} feature"
})
return suggestions
```
### 6. Visual Diff Enhancement
Generate visual representations:
**Mermaid Diagram Generator**
```python
def generate_architecture_diff(analysis):
"""
Generate diagram showing architectural changes
"""
if has_architectural_changes(analysis):
return f"""
## Architecture Changes
```mermaid
graph LR
subgraph "Before"
A1[Component A] --> B1[Component B]
B1 --> C1[Database]
end
subgraph "After"
A2[Component A] --> B2[Component B]
B2 --> C2[Database]
B2 --> D2[New Cache Layer]
A2 --> E2[New API Gateway]
end
style D2 fill:#90EE90
style E2 fill:#90EE90
```
### Key Changes:
1. Added caching layer for performance
2. Introduced API gateway for better routing
3. Refactored component communication
"""
return ""
```
### 7. Test Coverage Report
Include test coverage analysis:
**Coverage Report Generator**
```python
def generate_coverage_report(base_branch='main'):
"""
Generate test coverage comparison
"""
# Get coverage before and after
before_coverage = get_coverage_for_branch(base_branch)
after_coverage = get_coverage_for_branch('HEAD')
coverage_diff = after_coverage - before_coverage
report = f"""
## Test Coverage
| Metric | Before | After | Change |
|--------|--------|-------|--------|
| Lines | {before_coverage['lines']:.1f}% | {after_coverage['lines']:.1f}% | {format_diff(coverage_diff['lines'])} |
| Functions | {before_coverage['functions']:.1f}% | {after_coverage['functions']:.1f}% | {format_diff(coverage_diff['functions'])} |
| Branches | {before_coverage['branches']:.1f}% | {after_coverage['branches']:.1f}% | {format_diff(coverage_diff['branches'])} |
### Uncovered Files
"""
# List files with low coverage
for file in get_low_coverage_files():
report += f"- `{file['name']}`: {file['coverage']:.1f}% coverage\n"
return report
def format_diff(value):
"""Format coverage difference"""
if value > 0:
return f"<span style='color: green'>+{value:.1f}%</span> ✅"
elif value < 0:
return f"<span style='color: red'>{value:.1f}%</span> ⚠️"
else:
return "No change"
```
### 8. Risk Assessment
Evaluate PR risk:
**Risk Calculator**
```python
def calculate_pr_risk(analysis):
"""
Calculate risk score for PR
"""
risk_factors = {
'size': calculate_size_risk(analysis),
'complexity': calculate_complexity_risk(analysis),
'test_coverage': calculate_test_risk(analysis),
'dependencies': calculate_dependency_risk(analysis),
'security': calculate_security_risk(analysis)
}
overall_risk = sum(risk_factors.values()) / len(risk_factors)
risk_report = f"""
## Risk Assessment
**Overall Risk Level**: {get_risk_level(overall_risk)} ({overall_risk:.1f}/10)
### Risk Factors
| Factor | Score | Details |
|--------|-------|---------|
| Size | {risk_factors['size']:.1f}/10 | {get_size_details(analysis)} |
| Complexity | {risk_factors['complexity']:.1f}/10 | {get_complexity_details(analysis)} |
| Test Coverage | {risk_factors['test_coverage']:.1f}/10 | {get_test_details(analysis)} |
| Dependencies | {risk_factors['dependencies']:.1f}/10 | {get_dependency_details(analysis)} |
| Security | {risk_factors['security']:.1f}/10 | {get_security_details(analysis)} |
### Mitigation Strategies
{generate_mitigation_strategies(risk_factors)}
"""
return risk_report
def get_risk_level(score):
"""Convert score to risk level"""
if score < 3:
return "🟢 Low"
elif score < 6:
return "🟡 Medium"
elif score < 8:
return "🟠 High"
else:
return "🔴 Critical"
```
### 9. PR Templates
Generate context-specific templates:
```python
def generate_pr_template(pr_type, analysis):
"""
Generate PR template based on type
"""
templates = {
'feature': f"""
## Feature: {extract_feature_name(analysis)}
### Description
{generate_feature_description(analysis)}
### User Story
As a [user type]
I want [feature]
So that [benefit]
### Acceptance Criteria
- [ ] Criterion 1
- [ ] Criterion 2
- [ ] Criterion 3
### Demo
[Link to demo or screenshots]
### Technical Implementation
{generate_technical_summary(analysis)}
### Testing Strategy
{generate_test_strategy(analysis)}
""",
'bugfix': f"""
## Bug Fix: {extract_bug_description(analysis)}
### Issue
- **Reported in**: #[issue-number]
- **Severity**: {determine_severity(analysis)}
- **Affected versions**: {get_affected_versions(analysis)}
### Root Cause
{analyze_root_cause(analysis)}
### Solution
{describe_solution(analysis)}
### Testing
- [ ] Bug is reproducible before fix
- [ ] Bug is resolved after fix
- [ ] No regressions introduced
- [ ] Edge cases tested
### Verification Steps
1. Step to reproduce original issue
2. Apply this fix
3. Verify issue is resolved
""",
'refactor': f"""
## Refactoring: {extract_refactor_scope(analysis)}
### Motivation
{describe_refactor_motivation(analysis)}
### Changes Made
{list_refactor_changes(analysis)}
### Benefits
- Improved {list_improvements(analysis)}
- Reduced {list_reductions(analysis)}
### Compatibility
- [ ] No breaking changes
- [ ] API remains unchanged
- [ ] Performance maintained or improved
### Metrics
| Metric | Before | After |
|--------|--------|-------|
| Complexity | X | Y |
| Test Coverage | X% | Y% |
| Performance | Xms | Yms |
"""
}
return templates.get(pr_type, templates['feature'])
```
### 10. Review Response Templates
Help with review responses:
```python
review_response_templates = {
'acknowledge_feedback': """
Thank you for the thorough review! I'll address these points.
""",
'explain_decision': """
Great question! I chose this approach because:
1. [Reason 1]
2. [Reason 2]
Alternative approaches considered:
- [Alternative 1]: [Why not chosen]
- [Alternative 2]: [Why not chosen]
Happy to discuss further if you have concerns.
""",
'request_clarification': """
Thanks for the feedback. Could you clarify what you mean by [specific point]?
I want to make sure I understand your concern correctly before making changes.
""",
'disagree_respectfully': """
I appreciate your perspective on this. I have a slightly different view:
[Your reasoning]
However, I'm open to discussing this further. What do you think about [compromise/middle ground]?
""",
'commit_to_change': """
Good catch! I'll update this to [specific change].
This should address [concern] while maintaining [other requirement].
"""
}
```
## Output Format
1. **PR Summary**: Executive summary with key metrics
2. **Detailed Description**: Comprehensive PR description
3. **Review Checklist**: Context-aware review items
4. **Risk Assessment**: Risk analysis with mitigation strategies
5. **Test Coverage**: Before/after coverage comparison
6. **Visual Aids**: Diagrams and visual diffs where applicable
7. **Size Recommendations**: Suggestions for splitting large PRs
8. **Review Automation**: Automated checks and findings
Focus on creating PRs that are a pleasure to review, with all necessary context and documentation for efficient code review process.