Initial commit
This commit is contained in:
66
commands/qualify-lead.md
Normal file
66
commands/qualify-lead.md
Normal file
@@ -0,0 +1,66 @@
|
||||
---
|
||||
name: qualify-lead
|
||||
description: Evaluate prospect fit and intent to determine next-best action for sales teams.
|
||||
usage: /sales-prospecting:qualify-lead --company "Acme" --persona "VP Revenue" --signals intent.json
|
||||
---
|
||||
|
||||
# Qualify Lead Command
|
||||
|
||||
Score leads against ICP, intent signals, and buying triggers to decide whether to route, recycle, or nurture.
|
||||
|
||||
## Command Syntax
|
||||
```bash
|
||||
/sales-prospecting:qualify-lead \
|
||||
--company "<name>" \
|
||||
--persona "<title>" \
|
||||
--firmographics firmo.json \
|
||||
--technographics tech.json \
|
||||
--signals intent.json \
|
||||
--threshold 75
|
||||
```
|
||||
|
||||
### Parameters
|
||||
- `--company`: Account name or domain.
|
||||
- `--persona`: Primary buyer role under evaluation.
|
||||
- `--firmographics`: JSON/CSV input of company attributes.
|
||||
- `--technographics`: Technology stack details.
|
||||
- `--signals`: Intent data (product usage, web visits, 3rd-party intent).
|
||||
- `--threshold`: Minimum composite score to pass to sales (default 70).
|
||||
- `--stage`: Lead stage (MQL, PQL, recycled) to influence scoring weights.
|
||||
|
||||
## Workflow
|
||||
1. **Data Normalization** – clean and map firmographic, technographic, and behavior fields.
|
||||
2. **Fit Scoring** – apply weighted ICP model (industry, size, geography, use case, tech stack compatibility).
|
||||
3. **Intent Scoring** – incorporate behavioral data (content engagement, trials, intent providers, product telemetry).
|
||||
4. **Timing Assessment** – evaluate trigger events (funding, hires, tech churn) plus buying cycle alignment.
|
||||
5. **Recommendation Engine** – produce route/recycle/nurture guidance with rationale, next steps, and owner.
|
||||
|
||||
## Output Schema
|
||||
```json
|
||||
{
|
||||
"company": "Acme Corp",
|
||||
"fit_score": 82,
|
||||
"intent_score": 76,
|
||||
"composite_score": 79,
|
||||
"decision": "route-to-ae",
|
||||
"urgency": "high",
|
||||
"rationale": [
|
||||
"ICP match: SaaS, 200 employees, US",
|
||||
"High technographic overlap",
|
||||
"Recent product trial and pricing page visits"
|
||||
],
|
||||
"next_steps": [
|
||||
"Assign to AE Sarah Lee",
|
||||
"Send enterprise case study",
|
||||
"Schedule discovery call within 48h"
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
- Keep scoring models transparent so SDRs/RevOps can adjust weights.
|
||||
- Blend qualitative notes (call transcripts) with quantitative data.
|
||||
- Auto-sync outcomes to CRM and track model drift monthly.
|
||||
- Use different thresholds for inbound vs outbound vs product-led leads.
|
||||
|
||||
---
|
||||
Reference in New Issue
Block a user