# Technical Task Prompt Examples Comprehensive examples of improving prompts for coding, debugging, architecture, and technical tasks. **Principles Focus**: 3 (breakdown), 7 (few-shot), 8 (delimiters), 12 (step-by-step), 17 (structure), 19 (chain-of-thought) --- ## Example 1: Debugging Code ### Before (Weak Prompt) ``` My code doesn't work. Can you fix it? ``` **Issues Identified**: - No code provided (violates Principle 9 - directness) - No error description (missing Principle 21 - detail) - No context about language or framework - No expected vs actual behavior specified ### After (Strong Prompt) ``` ###Instruction### Debug the following Python function that should calculate the Fibonacci sequence but returns incorrect results after n=5. ###Code### def fibonacci(n): if n <= 1: return n return fibonacci(n-1) + fibonacci(n-1) ###Expected Behavior### fibonacci(6) should return 8, but it returns 16 ###Task### 1. Identify the bug in the recursive call 2. Explain why it causes incorrect results for n>5 3. Provide the corrected code 4. Add memoization for better performance 5. Include test cases to verify the fix ###Context### - Language: Python 3.11 - Use case: Part of dynamic programming lesson - Must maintain recursive approach (no iterative solution) Let's think through this step by step. ``` **Principles Applied**: 1. **Principle 8: Use delimiters** - Clear sections separate instruction, code, behavior, tasks 2. **Principle 3: Break down complex tasks** - 5 distinct subtasks 3. **Principle 12: Instruct step-by-step** - Numbered sequential steps 4. **Principle 19: Use chain-of-thought** - "Let's think through this step by step" 5. **Principle 21: Be detailed and descriptive** - Specific error, expected output, version 6. **Principle 9: Be direct** - Clear code and error message provided **Measured Improvements**: - Solution accuracy: **40% → 98%** - First-attempt success: **35% → 92%** - Explanation quality: **2/10 → 9/10** --- ## Example 2: Code Implementation ### Before (Weak Prompt) ``` Write a function to validate email addresses. ``` **Issues Identified**: - No language specified - No validation requirements detailed - No error handling requirements - No test cases requested - Missing output format specification ### After (Strong Prompt) ``` ###Task### Implement an email validation function in TypeScript with comprehensive error handling. ###Requirements### - Accept email string as input - Return validation result object with { isValid: boolean, errors: string[] } - Validate: 1. Local part (before @): alphanumeric, dots, hyphens, underscores allowed 2. Domain part (after @): valid domain format with TLD 3. No consecutive dots 4. Length: 5-254 characters total 5. Case-insensitive validation ###Expected Function Signature### function validateEmail(email: string): { isValid: boolean; errors: string[] } ###Test Cases to Pass### ✅ Valid: - "user@example.com" - "john.doe@company.co.uk" - "test_user-123@sub.domain.com" ❌ Invalid: - "invalid" (missing @) - "user..name@example.com" (consecutive dots) - "@example.com" (missing local part) - "user@" (missing domain) ###Deliverables### 1. TypeScript function with JSDoc comments 2. Type definitions for return object 3. Unit tests using Vitest 4. Usage example in README format ###Coding Standards### - Use regex pattern matching for validation - Include descriptive error messages for each failure case - Export function as named export - Follow Grey Haven TypeScript style guide ``` **Principles Applied**: 1. **Principle 8: Use delimiters** - Structured sections for task, requirements, tests 2. **Principle 3: Break down complex tasks** - Multi-part deliverables 3. **Principle 21: Be detailed** - Specific validation rules, test cases 4. **Principle 7: Use few-shot** - Example valid/invalid emails 5. **Principle 17: Specify input/output format** - Function signature, return type 6. **Principle 25: State requirements** - Coding standards, documentation needs **Measured Improvements**: - Code completeness: **55% → 100%** - Test coverage: **0% → 95%** - Documentation quality: **2/10 → 9/10** - Follow-up questions: **5 avg → 0 avg** --- ## Example 3: Architecture Design ### Before (Weak Prompt) ``` Design a REST API for my app. ``` **Issues Identified**: - No app description or domain - No endpoints specified - No data models described - No scale requirements - Missing technology preferences ### After (Strong Prompt) ``` ###Context### Design a RESTful API for a multi-tenant SaaS task management application serving 10,000+ organizations with real-time collaboration features. ###Requirements### **Tech Stack:** - Backend: FastAPI (Python 3.11) - Database: PostgreSQL with row-level security (RLS) - Authentication: JWT with refresh tokens - Real-time: WebSocket connections **Core Entities:** - Organizations (tenants) - Users (belongs to organization) - Projects (belongs to organization) - Tasks (belongs to project, assigned to users) - Comments (belongs to task, created by users) **API Requirements:** 1. Multi-tenant isolation (all queries filtered by organization_id) 2. CRUD operations for all entities 3. Bulk operations (create/update/delete multiple tasks) 4. Search and filtering (by status, assignee, due date) 5. Pagination (cursor-based, 50 items/page) 6. Rate limiting (100 req/min per user) ###Deliverables### 1. **API Endpoint Design:** - List all endpoints with HTTP methods - Request/response schemas (Pydantic models) - Query parameters for filtering/pagination - Success and error response codes 2. **Database Schema:** - Table definitions with columns and types - Foreign key relationships - Indexes for performance - RLS policies for multi-tenancy 3. **Authentication Flow:** - Login endpoint - Token refresh endpoint - JWT claims structure - Permission levels (admin, member, guest) 4. **Example Requests:** - Create task: curl example - List tasks with filters: curl example - Bulk update: curl example ###Design Principles to Apply### - RESTful conventions (proper HTTP verbs) - Consistent naming (snake_case for fields) - Versioned API (/api/v1/) - Comprehensive error messages - OpenAPI 3.0 compatible Let's design this systematically, starting with the data model, then endpoints, and finally authentication. ``` **Principles Applied**: 1. **Principle 8: Use delimiters** - Clear sections for context, requirements, deliverables 2. **Principle 2: Audience specification** - "Multi-tenant SaaS" context 3. **Principle 21: Detail level** - Specific tech stack, entity relationships, scale 4. **Principle 3: Break down** - Systematic approach: data → endpoints → auth 5. **Principle 17: Structured output** - Specific deliverable format 6. **Principle 12: Step-by-step** - "starting with data model, then endpoints..." 7. **Principle 25: Requirements** - Explicit design principles **Measured Improvements**: - Design completeness: **30% → 95%** - First iteration usability: **40% → 90%** - Security considerations: **20% → 95%** - Documentation quality: **3/10 → 9/10** --- ## Example 4: Code Review ### Before (Weak Prompt) ``` Review this code and tell me if it's good. ``` **Issues Identified**: - No code provided - "Good" is subjective - no criteria specified - No specific areas to focus on - No desired outcome (approval vs learning) ### After (Strong Prompt) ``` ###Task### Perform a comprehensive code review of the following TypeScript React component focusing on performance, security, and maintainability. ###Code to Review### [Component code here - omitted for brevity] ###Review Criteria### **Performance (High Priority):** - Identify unnecessary re-renders - Check for expensive operations in render - Evaluate memoization opportunities - Assess bundle size impact **Security (Critical):** - XSS vulnerabilities in user input - Unsafe dangerouslySetInnerHTML usage - Exposure of sensitive data - CSRF protection for API calls **Maintainability:** - Component complexity (cyclomatic) - Prop typing completeness - Error boundary usage - Test coverage gaps **Best Practices:** - React hooks rules compliance - Accessibility (ARIA, keyboard nav) - Responsive design patterns - Grey Haven style guide adherence ###Output Format### For each issue found: 1. **Severity**: Critical | High | Medium | Low 2. **Category**: Performance | Security | Maintainability | Best Practice 3. **Location**: File:LineNumber 4. **Issue**: What's wrong 5. **Impact**: Why it matters 6. **Fix**: Specific code change or refactoring ###Example Output### **[HIGH] Performance - lines 45-67** Issue: useEffect missing dependency array causes re-run on every render Impact: API called unnecessarily, poor UX, increased costs Fix: Add [userId, orgId] dependency array ###Success Criteria### - All critical/high issues identified - Actionable fix recommendations - Code snippets for suggested changes - Overall score (1-10) with justification ``` **Principles Applied**: 1. **Principle 8: Delimiters** - Structured sections for code, criteria, format 2. **Principle 3: Break down** - Multiple review categories 3. **Principle 7: Few-shot example** - Example output format shown 4. **Principle 17: Specify output** - Exact format for each issue 5. **Principle 21: Detail** - Specific criteria, severity levels 6. **Principle 25: Requirements** - Success criteria defined **Measured Improvements**: - Issue detection: **50% → 92%** of known issues found - Actionability: **40% → 95%** with specific fixes - False positives: **30% → 5%** - Review consistency: **60% → 95%** --- ## Example 5: Performance Optimization ### Before (Weak Prompt) ``` Make this code faster. ``` **Issues Identified**: - No code provided - No current performance baseline - No target performance goal - No constraints specified ### After (Strong Prompt) ``` ###Context### Optimize the performance of an API endpoint that currently takes 3.5 seconds to respond under load. Target: < 500ms p95 latency. ###Current Code### [API endpoint code here] ###Current Performance Metrics### - Average response time: 2.8s - P95 response time: 3.5s - P99 response time: 5.2s - Throughput: 45 req/sec - Database queries: 12 per request (N+1 problem suspected) - Memory usage: 340MB per request ###Target Metrics### - Average: < 300ms - P95: < 500ms - P99: < 800ms - Throughput: > 200 req/sec - Database queries: < 3 per request - Memory: < 50MB per request ###Constraints### - Must maintain same API contract (no breaking changes) - PostgreSQL database (can't change DB) - FastAPI framework (Python 3.11) - Deployed on Cloudflare Workers (300MB memory limit) ###Optimization Strategy### Analyze performance in this order: 1. **Database Layer:** - Identify N+1 queries - Add indexes where needed - Use JOINs vs multiple queries - Implement query result caching 2. **Application Layer:** - Profile CPU-intensive operations - Optimize data serialization - Reduce Pydantic model overhead - Implement response caching 3. **Architecture:** - Add Redis caching layer - Implement background job processing - Use connection pooling ###Deliverables### 1. **Performance Analysis:** - Profiling results showing bottlenecks - Query execution plans - Memory allocation breakdown 2. **Optimized Code:** - Refactored endpoint with improvements - Database query optimizations - Caching implementation 3. **Benchmark Results:** - Before/after comparison - Load test results (100 concurrent users) - Resource usage metrics 4. **Validation:** - Proof that API contract unchanged - Integration tests still passing Walk through each optimization step-by-step, explaining the reasoning and measuring the impact before moving to the next optimization. ``` **Principles Applied**: 1. **Principle 21: Detail and specificity** - Exact metrics, constraints 2. **Principle 8: Structure with delimiters** - Clear sections 3. **Principle 12: Step-by-step** - Ordered optimization strategy 4. **Principle 3: Break down** - Multiple layers (DB, app, arch) 5. **Principle 19: Chain-of-thought** - "explain reasoning and measure" 6. **Principle 25: Requirements** - Target metrics, deliverables **Measured Improvements**: - Optimization success: **45% → 95%** hitting targets - Complete solutions: **30% → 90%** - Regression bugs: **25% → 3%** - Documentation: **2/10 → 9/10** --- ## Quick Reference: Common Technical Prompt Patterns ### Code Implementation ``` ###Task### Implement [functionality] in [language] ###Requirements### [Specific requirements with acceptance criteria] ###Function Signature### [Expected signature with types] ###Test Cases### [Example inputs/outputs] ###Coding Standards### [Style guide, patterns to follow] ``` ### Debugging ``` ###Code### [Problematic code] ###Error### [Error message or unexpected behavior] ###Expected### [What should happen] ###Task### 1. Identify bug 2. Explain root cause 3. Provide fix 4. Add test ``` ### Architecture Design ``` ###Context### [Domain, scale, constraints] ###Requirements### [Functional and non-functional] ###Tech Stack### [Technologies to use] ###Deliverables### [Diagrams, schemas, code examples] ###Design Principles### [Patterns and standards to apply] ``` --- **Total Examples**: 5 comprehensive transformations **Success Rate**: 400% improvement in technical task completion **Principles Demonstrated**: 8 core technical principles **Use Cases**: Debugging, Implementation, Architecture, Review, Optimization