# LangChain4j RAG Implementation Guide ## Overview RAG (Retrieval-Augmented Generation) extends LLM knowledge by finding and injecting relevant information from your data into prompts before sending to the LLM. ## What is RAG? RAG helps LLMs answer questions using domain-specific knowledge by retrieving relevant information to reduce hallucinations. ## RAG Flavors in LangChain4j ### 1. Easy RAG Simplest way to start with minimal setup. Handles document loading, splitting, and embedding automatically. ### 2. Core RAG APIs Modular components including: - Document - TextSegment - EmbeddingModel - EmbeddingStore - DocumentSplitter ### 3. Advanced RAG Complex pipelines supporting: - Query transformation - Multi-source retrieval - Re-ranking with components like QueryTransformer and ContentRetriever ## RAG Stages ### 1. Indexing Pre-process documents for efficient search ### 2. Retrieval Find relevant content based on user queries ## Core Components ### Documents with metadata Structured representation of your content with associated metadata for filtering and context. ### Text segments (chunks) Smaller, manageable pieces of documents that are embedded and stored in vector databases. ### Embedding models Convert text segments into numerical vectors for similarity search. ### Embedding stores (vector databases) Store and efficiently retrieve embedded text segments. ### Content retrievers Find relevant content based on user queries. ### Query transformers Transform and optimize user queries for better retrieval. ### Content aggregators Combine and rank retrieved content. ## Advanced Features - Query transformation and routing - Multiple retrievers for different data sources - Re-ranking models for improved relevance - Metadata filtering for targeted retrieval - Parallel processing for performance ## Implementation Example (Easy RAG) ```java // Load documents List documents = FileSystemDocumentLoader.loadDocuments("/path/to/docs"); // Create embedding store InMemoryEmbeddingStore embeddingStore = new InMemoryEmbeddingStore<>(); // Ingest documents EmbeddingStoreIngestor.ingest(documents, embeddingStore); // Create AI service Assistant assistant = AiServices.builder(Assistant.class) .chatModel(chatModel) .chatMemory(MessageWindowChatMemory.withMaxMessages(10)) .contentRetriever(EmbeddingStoreContentRetriever.from(embeddingStore)) .build(); ``` ## Best Practices 1. **Document Preparation**: Clean and structure documents before ingestion 2. **Chunk Size**: Balance between context preservation and retrieval precision 3. **Metadata Strategy**: Include relevant metadata for filtering and context 4. **Embedding Model Selection**: Choose models appropriate for your domain 5. **Retrieval Strategy**: Select appropriate k values and filtering criteria 6. **Evaluation**: Continuously evaluate retrieval quality and answer accuracy