# Embedding Models Guide ## Overview Embedding models convert text into numerical vectors that capture semantic meaning for similarity search in RAG systems. ## Popular Embedding Models ### 1. text-embedding-ada-002 (OpenAI) - **Dimensions**: 1536 - **Type**: General purpose - **Use Case**: Most applications requiring high quality embeddings - **Performance**: Excellent balance of quality and speed ### 2. all-MiniLM-L6-v2 (Sentence Transformers) - **Dimensions**: 384 - **Type**: Lightweight - **Use Case**: Applications requiring fast inference - **Performance**: Good quality, very fast ### 3. e5-large-v2 - **Dimensions**: 1024 - **Type**: High quality - **Use Case**: Applications needing superior performance - **Performance**: Excellent quality, multilingual support ### 4. Instructor - **Dimensions**: Variable (768) - **Type**: Task-specific - **Use Case**: Domain-specific applications - **Performance**: Can be fine-tuned for specific tasks ### 5. bge-large-en-v1.5 - **Dimensions**: 1024 - **Type**: State-of-the-art - **Use Case**: Applications requiring best possible quality - **Performance**: SOTA performance on benchmarks ## Selection Criteria 1. **Quality vs Speed**: Balance between embedding quality and inference speed 2. **Dimension Size**: Impact on storage and retrieval performance 3. **Domain**: Specific language or domain requirements 4. **Cost**: API costs vs local deployment 5. **Batch Size**: Throughput requirements 6. **Language**: Multilingual support needs ## Usage Examples ### OpenAI Embeddings ```python from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vector = embeddings.embed_query("Your text here") ``` ### Sentence Transformers ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-MiniLM-L6-v2') vector = model.encode("Your text here") ``` ### Hugging Face Models ```python from langchain.embeddings import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-L6-v2" ) ``` ## Optimization Tips 1. **Batch Processing**: Process multiple texts together for efficiency 2. **Model Quantization**: Reduce model size for faster inference 3. **Caching**: Cache embeddings for frequently used texts 4. **GPU Acceleration**: Use GPU for faster processing when available 5. **Model Selection**: Choose appropriate model size for your use case ## Evaluation Metrics 1. **Semantic Similarity**: How well embeddings capture meaning 2. **Retrieval Performance**: Quality of retrieved documents 3. **Speed**: Inference time per document 4. **Memory Usage**: RAM requirements for the model 5. **Cost**: API costs or infrastructure requirements