# Prompt Optimization Frameworks This reference provides systematic methodologies for iteratively improving prompt performance through structured testing, measurement, and refinement processes. ## Optimization Process Overview ### Iterative Improvement Cycle ```mermaid graph TD A[Baseline Measurement] --> B[Hypothesis Generation] B --> C[Controlled Test] C --> D[Performance Analysis] D --> E[Statistical Validation] E --> F[Implementation Decision] F --> G[Monitor Impact] G --> H[Learn & Iterate] H --> B ``` ### Core Optimization Principles - **Single Variable Testing**: Change one element at a time for accurate attribution - **Measurable Metrics**: Define quantitative success criteria - **Statistical Significance**: Use proper sample sizes and validation methods - **Controlled Environment**: Test conditions must be consistent - **Baseline Comparison**: Always measure against established baseline ## Performance Metrics Framework ### Primary Metrics #### Task Success Rate ```python def calculate_success_rate(results, expected_outputs): """ Measure percentage of tasks completed correctly. """ correct = sum(1 for result, expected in zip(results, expected_outputs) if result == expected) return (correct / len(results)) * 100 ``` #### Response Consistency ```python def measure_consistency(prompt, test_cases, num_runs=5): """ Measure response stability across multiple runs. """ responses = {} for test_case in test_cases: test_responses = [] for _ in range(num_runs): response = execute_prompt(prompt, test_case) test_responses.append(response) # Calculate similarity score for consistency consistency = calculate_similarity(test_responses) responses[test_case] = consistency return sum(responses.values()) / len(responses) ``` #### Token Efficiency ```python def calculate_token_efficiency(prompt, test_cases): """ Measure token usage per successful task completion. """ total_tokens = 0 successful_tasks = 0 for test_case in test_cases: response = execute_prompt_with_metrics(prompt, test_case) total_tokens += response.token_count if response.is_successful: successful_tasks += 1 return total_tokens / successful_tasks if successful_tasks > 0 else float('inf') ``` #### Response Latency ```python def measure_response_time(prompt, test_cases): """ Measure average response time. """ times = [] for test_case in test_cases: start_time = time.time() execute_prompt(prompt, test_case) end_time = time.time() times.append(end_time - start_time) return sum(times) / len(times) ``` ### Secondary Metrics #### Output Quality Score ```python def assess_output_quality(response, criteria): """ Multi-dimensional quality assessment. """ scores = { 'accuracy': measure_accuracy(response), 'completeness': measure_completeness(response), 'coherence': measure_coherence(response), 'relevance': measure_relevance(response), 'format_compliance': measure_format_compliance(response) } weights = [0.3, 0.2, 0.2, 0.2, 0.1] return sum(score * weight for score, weight in zip(scores.values(), weights)) ``` #### Safety Compliance ```python def check_safety_compliance(response): """ Measure adherence to safety guidelines. """ violations = [] # Check for various safety issues if contains_harmful_content(response): violations.append('harmful_content') if has_bias(response): violations.append('bias') if violates_privacy(response): violations.append('privacy_violation') safety_score = max(0, 100 - len(violations) * 25) return safety_score, violations ``` ## A/B Testing Methodology ### Controlled Test Design ```python def design_ab_test(baseline_prompt, variant_prompt, test_cases): """ Design controlled A/B test with proper statistical power. """ # Calculate required sample size effect_size = estimate_effect_size(baseline_prompt, variant_prompt) sample_size = calculate_sample_size(effect_size, power=0.8, alpha=0.05) # Random assignment randomized_cases = random.sample(test_cases, sample_size) split_point = len(randomized_cases) // 2 group_a = randomized_cases[:split_point] group_b = randomized_cases[split_point:] return { 'baseline_group': group_a, 'variant_group': group_b, 'sample_size': sample_size, 'statistical_power': 0.8, 'significance_level': 0.05 } ``` ### Statistical Analysis ```python def analyze_ab_results(baseline_results, variant_results): """ Perform statistical analysis of A/B test results. """ # Calculate means and standard deviations baseline_mean = np.mean(baseline_results) variant_mean = np.mean(variant_results) baseline_std = np.std(baseline_results) variant_std = np.std(variant_results) # Perform t-test t_statistic, p_value = stats.ttest_ind(baseline_results, variant_results) # Calculate effect size (Cohen's d) pooled_std = np.sqrt(((len(baseline_results) - 1) * baseline_std**2 + (len(variant_results) - 1) * variant_std**2) / (len(baseline_results) + len(variant_results) - 2)) cohens_d = (variant_mean - baseline_mean) / pooled_std return { 'baseline_mean': baseline_mean, 'variant_mean': variant_mean, 'improvement': ((variant_mean - baseline_mean) / baseline_mean) * 100, 'p_value': p_value, 'statistical_significance': p_value < 0.05, 'effect_size': cohens_d, 'recommendation': 'implement_variant' if p_value < 0.05 and cohens_d > 0.2 else 'keep_baseline' } ``` ## Optimization Strategies ### Strategy 1: Progressive Enhancement #### Stepwise Improvement Process ```python def progressive_optimization(base_prompt, test_cases, max_iterations=10): """ Incrementally improve prompt through systematic testing. """ current_prompt = base_prompt current_performance = evaluate_prompt(current_prompt, test_cases) optimization_history = [] for iteration in range(max_iterations): # Generate improvement hypotheses hypotheses = generate_improvement_hypotheses(current_prompt, current_performance) best_improvement = None best_performance = current_performance for hypothesis in hypotheses: # Test hypothesis test_prompt = apply_hypothesis(current_prompt, hypothesis) test_performance = evaluate_prompt(test_prompt, test_cases) # Validate improvement if is_statistically_significant(current_performance, test_performance): if test_performance.overall_score > best_performance.overall_score: best_improvement = hypothesis best_performance = test_performance # Apply best improvement if found if best_improvement: current_prompt = apply_hypothesis(current_prompt, best_improvement) optimization_history.append({ 'iteration': iteration, 'hypothesis': best_improvement, 'performance_before': current_performance, 'performance_after': best_performance, 'improvement': best_performance.overall_score - current_performance.overall_score }) current_performance = best_performance else: break # No further improvements found return current_prompt, optimization_history ``` ### Strategy 2: Multi-Objective Optimization #### Pareto Optimization Framework ```python def multi_objective_optimization(prompt_variants, objectives): """ Optimize for multiple competing objectives using Pareto efficiency. """ results = [] for variant in prompt_variants: scores = {} for objective in objectives: scores[objective] = evaluate_objective(variant, objective) results.append({ 'prompt': variant, 'scores': scores, 'dominates': [] }) # Find Pareto optimal solutions pareto_optimal = [] for i, result_i in enumerate(results): is_dominated = False for j, result_j in enumerate(results): if i != j and dominates(result_j, result_i): is_dominated = True break if not is_dominated: pareto_optimal.append(result_i) return pareto_optimal def dominates(result_a, result_b): """ Check if result_a dominates result_b in all objectives. """ return all(result_a['scores'][obj] >= result_b['scores'][obj] for obj in result_a['scores']) ``` ### Strategy 3: Adaptive Testing #### Dynamic Test Allocation ```python def adaptive_testing(prompt_variants, initial_budget): """ Dynamically allocate testing budget to promising variants. """ # Initial exploration phase exploration_results = {} budget分配 = initial_budget // len(prompt_variants) for variant in prompt_variants: exploration_results[variant] = test_prompt(variant, budget分配) # Exploitation phase - allocate more budget to promising variants total_budget_spent = len(prompt_variants) * budget分配 remaining_budget = initial_budget - total_budget_spent # Sort by performance sorted_variants = sorted(exploration_results.items(), key=lambda x: x[1].overall_score, reverse=True) # Allocate remaining budget proportionally to performance final_results = {} for i, (variant, initial_result) in enumerate(sorted_variants): if remaining_budget > 0: additional_budget = max(1, remaining_budget // (len(sorted_variants) - i)) final_results[variant] = test_prompt(variant, additional_budget) remaining_budget -= additional_budget else: final_results[variant] = initial_result return final_results ``` ## Optimization Hypotheses ### Common Optimization Areas #### Instruction Clarity ```python instruction_clarity_hypotheses = [ "Add numbered steps to instructions", "Include specific output format examples", "Clarify role and expertise level", "Add context and background information", "Specify constraints and boundaries", "Include success criteria and evaluation standards" ] ``` #### Example Quality ```python example_optimization_hypotheses = [ "Increase number of examples from 3 to 5", "Add edge case examples", "Reorder examples by complexity", "Include negative examples", "Add reasoning traces to examples", "Improve example diversity and coverage" ] ``` #### Structure Optimization ```python structure_hypotheses = [ "Add clear section headings", "Reorganize content flow", "Include summary at the beginning", "Add checklist for verification", "Separate instructions from examples", "Add troubleshooting section" ] ``` #### Model-Specific Optimization ```python model_specific_hypotheses = { 'claude': [ "Use XML tags for structure", "Add sections for reasoning", "Include constitutional AI principles", "Use system message format", "Add safety guidelines and constraints" ], 'gpt-4': [ "Use numbered sections with ### headers", "Include JSON format specifications", "Add function calling patterns", "Use bullet points for clarity", "Include error handling instructions" ], 'gemini': [ "Use bold headers with ** formatting", "Include step-by-step process descriptions", "Add validation checkpoints", "Use conversational tone", "Include confidence scoring" ] } ``` ## Continuous Monitoring ### Production Performance Tracking ```python def setup_monitoring(prompt, alert_thresholds): """ Set up continuous monitoring for deployed prompts. """ monitors = { 'success_rate': MetricMonitor('success_rate', alert_thresholds['success_rate']), 'response_time': MetricMonitor('response_time', alert_thresholds['response_time']), 'token_cost': MetricMonitor('token_cost', alert_thresholds['token_cost']), 'safety_score': MetricMonitor('safety_score', alert_thresholds['safety_score']) } def monitor_performance(): recent_data = collect_recent_performance(prompt) alerts = [] for metric_name, monitor in monitors.items(): if metric_name in recent_data: alert = monitor.check(recent_data[metric_name]) if alert: alerts.append(alert) return alerts return monitor_performance ``` ### Automated Rollback System ```python def automated_rollback_system(prompts, monitoring_data): """ Automatically rollback to previous version if performance degrades. """ def check_and_rollback(current_prompt, baseline_prompt): current_metrics = monitoring_data.get_metrics(current_prompt) baseline_metrics = monitoring_data.get_metrics(baseline_prompt) # Check if performance degradation exceeds threshold degradation_threshold = 0.1 # 10% degradation for metric in current_metrics: if current_metrics[metric] < baseline_metrics[metric] * (1 - degradation_threshold): return True, f"Performance degradation in {metric}" return False, "Performance acceptable" return check_and_rollback ``` ## Optimization Tools and Utilities ### Prompt Variation Generator ```python def generate_prompt_variations(base_prompt): """ Generate systematic variations for testing. """ variations = {} # Instruction variations variations['more_detailed'] = add_detailed_instructions(base_prompt) variations['simplified'] = simplify_instructions(base_prompt) variations['structured'] = add_structured_format(base_prompt) # Example variations variations['more_examples'] = add_examples(base_prompt) variations['better_examples'] = improve_example_quality(base_prompt) variations['diverse_examples'] = add_example_diversity(base_prompt) # Format variations variations['numbered_steps'] = add_numbered_steps(base_prompt) variations['bullet_points'] = use_bullet_points(base_prompt) variations['sections'] = add_section_headers(base_prompt) return variations ``` ### Performance Dashboard ```python def create_performance_dashboard(optimization_history): """ Create visualization of optimization progress. """ # Generate performance metrics over time metrics_over_time = { 'iterations': [h['iteration'] for h in optimization_history], 'success_rates': [h['performance_after'].success_rate for h in optimization_history], 'token_efficiency': [h['performance_after'].token_efficiency for h in optimization_history], 'response_times': [h['performance_after'].response_time for h in optimization_history] } return PerformanceDashboard(metrics_over_time) ``` This comprehensive framework provides systematic methodologies for continuous prompt improvement through data-driven optimization and rigorous testing processes.