Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:28:30 +08:00
commit 171acedaa4
220 changed files with 85967 additions and 0 deletions

View File

@@ -0,0 +1,346 @@
---
name: langchain4j-vector-stores-configuration
description: Configure LangChain4J vector stores for RAG applications. Use when building semantic search, integrating vector databases (PostgreSQL/pgvector, Pinecone, MongoDB, Milvus, Neo4j), implementing embedding storage/retrieval, setting up hybrid search, or optimizing vector database performance for production AI applications.
allowed-tools: Read, Write, Bash, Edit
category: backend
tags: [langchain4j, vector-stores, embeddings, rag, semantic-search, ai, llm, java, databases]
version: 1.1.0
---
# LangChain4J Vector Stores Configuration
Configure vector stores for Retrieval-Augmented Generation applications with LangChain4J.
## When to Use
To configure vector stores when:
- Building RAG applications requiring embedding storage and retrieval
- Implementing semantic search in Java applications
- Integrating LLMs with vector databases for context-aware responses
- Configuring multi-modal embedding storage for text, images, or other data
- Setting up hybrid search combining vector similarity and full-text search
- Migrating between different vector store providers
- Optimizing vector database performance for production workloads
- Building AI-powered applications with memory and persistence
- Implementing document chunking and embedding pipelines
- Creating recommendation systems based on vector similarity
## Instructions
### Set Up Basic Vector Store
Configure an embedding store for vector operations:
```java
@Bean
public EmbeddingStore<TextSegment> embeddingStore() {
return PgVectorEmbeddingStore.builder()
.host("localhost")
.port(5432)
.database("vectordb")
.user("username")
.password("password")
.table("embeddings")
.dimension(1536) // OpenAI embedding dimension
.createTable(true)
.useIndex(true)
.build();
}
```
### Configure Multiple Vector Stores
Use different stores for different use cases:
```java
@Configuration
public class MultiVectorStoreConfiguration {
@Bean
@Qualifier("documentsStore")
public EmbeddingStore<TextSegment> documentsEmbeddingStore() {
return PgVectorEmbeddingStore.builder()
.table("document_embeddings")
.dimension(1536)
.build();
}
@Bean
@Qualifier("chatHistoryStore")
public EmbeddingStore<TextSegment> chatHistoryEmbeddingStore() {
return MongoDbEmbeddingStore.builder()
.collectionName("chat_embeddings")
.build();
}
}
```
### Implement Document Ingestion
Use EmbeddingStoreIngestor for automated document processing:
```java
@Bean
public EmbeddingStoreIngestor embeddingStoreIngestor(
EmbeddingStore<TextSegment> embeddingStore,
EmbeddingModel embeddingModel) {
return EmbeddingStoreIngestor.builder()
.documentSplitter(DocumentSplitters.recursive(
300, // maxSegmentSizeInTokens
20, // maxOverlapSizeInTokens
new OpenAiTokenizer(GPT_3_5_TURBO)
))
.embeddingModel(embeddingModel)
.embeddingStore(embeddingStore)
.build();
}
```
### Set Up Metadata Filtering
Configure metadata-based filtering capabilities:
```java
// MongoDB with metadata field mapping
IndexMapping indexMapping = IndexMapping.builder()
.dimension(1536)
.metadataFieldNames(Set.of("category", "source", "created_date", "author"))
.build();
// Search with metadata filters
EmbeddingSearchRequest request = EmbeddingSearchRequest.builder()
.queryEmbedding(queryEmbedding)
.maxResults(10)
.filter(and(
metadataKey("category").isEqualTo("technical_docs"),
metadataKey("created_date").isGreaterThan(LocalDate.now().minusMonths(6))
))
.build();
```
### Configure Production Settings
Implement connection pooling and monitoring:
```java
@Bean
public EmbeddingStore<TextSegment> optimizedPgVectorStore() {
HikariConfig hikariConfig = new HikariConfig();
hikariConfig.setJdbcUrl("jdbc:postgresql://localhost:5432/vectordb");
hikariConfig.setUsername("username");
hikariConfig.setPassword("password");
hikariConfig.setMaximumPoolSize(20);
hikariConfig.setMinimumIdle(5);
hikariConfig.setConnectionTimeout(30000);
DataSource dataSource = new HikariDataSource(hikariConfig);
return PgVectorEmbeddingStore.builder()
.dataSource(dataSource)
.table("embeddings")
.dimension(1536)
.useIndex(true)
.build();
}
```
### Implement Health Checks
Monitor vector store connectivity:
```java
@Component
public class VectorStoreHealthIndicator implements HealthIndicator {
private final EmbeddingStore<TextSegment> embeddingStore;
@Override
public Health health() {
try {
embeddingStore.search(EmbeddingSearchRequest.builder()
.queryEmbedding(new Embedding(Collections.nCopies(1536, 0.0f)))
.maxResults(1)
.build());
return Health.up()
.withDetail("store", embeddingStore.getClass().getSimpleName())
.build();
} catch (Exception e) {
return Health.down()
.withDetail("error", e.getMessage())
.build();
}
}
}
```
## Examples
### Basic RAG Application Setup
```java
@Configuration
public class SimpleRagConfig {
@Bean
public EmbeddingStore<TextSegment> embeddingStore() {
return PgVectorEmbeddingStore.builder()
.host("localhost")
.database("rag_db")
.table("documents")
.dimension(1536)
.build();
}
@Bean
public ChatLanguageModel chatModel() {
return OpenAiChatModel.withApiKey(System.getenv("OPENAI_API_KEY"));
}
}
```
### Semantic Search Service
```java
@Service
public class SemanticSearchService {
private final EmbeddingStore<TextSegment> store;
private final EmbeddingModel embeddingModel;
public List<String> search(String query, int maxResults) {
Embedding queryEmbedding = embeddingModel.embed(query).content();
EmbeddingSearchRequest request = EmbeddingSearchRequest.builder()
.queryEmbedding(queryEmbedding)
.maxResults(maxResults)
.minScore(0.75)
.build();
return store.search(request).matches().stream()
.map(match -> match.embedded().text())
.toList();
}
}
```
### Production Setup with Monitoring
```java
@Configuration
public class ProductionVectorStoreConfig {
@Bean
public EmbeddingStore<TextSegment> vectorStore(
@Value("${vector.store.host}") String host,
MeterRegistry meterRegistry) {
EmbeddingStore<TextSegment> store = PgVectorEmbeddingStore.builder()
.host(host)
.database("production_vectors")
.useIndex(true)
.indexListSize(200)
.build();
return new MonitoredEmbeddingStore<>(store, meterRegistry);
}
}
```
## Best Practices
### Choose the Right Vector Store
**For Development:**
- Use `InMemoryEmbeddingStore` for local development and testing
- Fast setup, no external dependencies
- Data lost on application restart
**For Production:**
- **PostgreSQL + pgvector**: Excellent for existing PostgreSQL environments
- **Pinecone**: Managed service, good for rapid prototyping
- **MongoDB Atlas**: Good integration with existing MongoDB applications
- **Milvus/Zilliz**: High performance for large-scale deployments
### Configure Appropriate Index Types
Choose index types based on performance requirements:
```java
// For high recall requirements
.indexType(IndexType.FLAT) // Exact search, slower but accurate
// For balanced performance
.indexType(IndexType.IVF_FLAT) // Good balance of speed and accuracy
// For high-speed approximate search
.indexType(IndexType.HNSW) // Fastest, slightly less accurate
```
### Optimize Vector Dimensions
Match embedding dimensions to your model:
```java
// OpenAI text-embedding-3-small
.dimension(1536)
// OpenAI text-embedding-3-large
.dimension(3072)
// Sentence Transformers
.dimension(384) // all-MiniLM-L6-v2
.dimension(768) // all-mpnet-base-v2
```
### Implement Batch Operations
Use batch operations for better performance:
```java
@Service
public class BatchEmbeddingService {
private static final int BATCH_SIZE = 100;
public void addDocumentsBatch(List<Document> documents) {
for (List<Document> batch : Lists.partition(documents, BATCH_SIZE)) {
List<TextSegment> segments = batch.stream()
.map(doc -> TextSegment.from(doc.text(), doc.metadata()))
.collect(Collectors.toList());
List<Embedding> embeddings = embeddingModel.embedAll(segments)
.content();
embeddingStore.addAll(embeddings, segments);
}
}
}
```
### Secure Configuration
Protect sensitive configuration:
```java
// Use environment variables
@Value("${vector.store.api.key:#{null}}")
private String apiKey;
// Validate configuration
@PostConstruct
public void validateConfiguration() {
if (StringUtils.isBlank(apiKey)) {
throw new IllegalStateException("Vector store API key must be configured");
}
}
```
## References
For comprehensive documentation and advanced configurations, see:
- [API Reference](references/api-reference.md) - Complete API documentation
- [Examples](references/examples.md) - Production-ready examples

View File

@@ -0,0 +1,424 @@
# LangChain4j Vector Stores - API References
Complete API reference for configuring and using vector stores with LangChain4j.
## Vector Store Comparison
| Store | Setup | Performance | Scaling | Features |
|------------|-------------|-------------|----------------|---------------------|
| In-Memory | Easy | Fast | Single machine | Testing |
| Pinecone | SaaS | Fast | Automatic | Namespace, Metadata |
| Weaviate | Self-hosted | Medium | Manual | Hybrid search |
| Qdrant | Self-hosted | Fast | Manual | Filtering, GRPC |
| Chroma | Self-hosted | Medium | Manual | Simple API |
| PostgreSQL | Existing DB | Medium | Manual | SQL, pgvector |
| MongoDB | SaaS/Self | Medium | Automatic | Document store |
| Neo4j | Self-hosted | Medium | Manual | Graph + Vector |
| Milvus | Self-hosted | Very Fast | Manual | Large scale |
## EmbeddingStore Interface
### Core Methods
```java
public interface EmbeddingStore<Embedded> {
// Add single embedding
String add(Embedding embedding);
String add(String id, Embedding embedding);
String add(Embedding embedding, Embedded embedded);
// Add multiple embeddings
List<String> addAll(List<Embedding> embeddings);
List<String> addAll(List<Embedding> embeddings, List<Embedded> embeddeds);
List<String> addAll(List<String> ids, List<Embedding> embeddings, List<Embedded> embeddeds);
// Search
EmbeddingSearchResult<Embedded> search(EmbeddingSearchRequest request);
// Remove
void remove(String id);
void removeAll(Collection<String> ids);
void removeAll(Filter filter);
void removeAll();
}
```
## EmbeddingSearchRequest
### Building Search Requests
```java
EmbeddingSearchRequest request = EmbeddingSearchRequest.builder()
.queryEmbedding(embedding) // Required
.maxResults(5) // Default: 3
.minScore(0.7) // Threshold: 0-1
.filter(new IsEqualTo("status", "active")) // Optional
.build();
```
### EmbeddingSearchResult
```java
EmbeddingSearchResult<TextSegment> result = store.search(request);
List<EmbeddingMatch<TextSegment>> matches = result.matches();
for(
EmbeddingMatch<TextSegment> match :matches){
double score = match.score(); // 0-1 similarity
TextSegment segment = match.embedded(); // Retrieved content
String id = match.embeddingId(); // Unique ID
}
```
## Vector Store Configurations
### InMemoryEmbeddingStore
```java
EmbeddingStore<TextSegment> store = new InMemoryEmbeddingStore<>();
// Merge multiple stores
InMemoryEmbeddingStore<TextSegment> merged =
InMemoryEmbeddingStore.merge(store1, store2);
```
### PineconeEmbeddingStore
```java
PineconeEmbeddingStore store = PineconeEmbeddingStore.builder()
.apiKey(apiKey) // Required
.indexName("index-name") // Required
.namespace("namespace") // Optional: organize data
.environment("gcp-starter") // or "aws-us-east-1"
.build();
```
### WeaviateEmbeddingStore
```java
WeaviateEmbeddingStore store = WeaviateEmbeddingStore.builder()
.host("localhost") // Required
.port(8080) // Default: 8080
.scheme("http") // "http" or "https"
.collectionName("Documents") // Required
.apiKey("optional-key")
.useGrpc(false) // Use REST or gRPC
.build();
```
### QdrantEmbeddingStore
```java
QdrantEmbeddingStore store = QdrantEmbeddingStore.builder()
.host("localhost") // Required
.port(6333) // Default: 6333
.collectionName("documents") // Required
.https(false) // SSL/TLS
.apiKey("optional-key") // For authentication
.preferGrpc(true) // gRPC or REST
.timeout(Duration.ofSeconds(30)) // Connection timeout
.build();
```
### ChromaEmbeddingStore
```java
ChromaEmbeddingStore store = ChromaEmbeddingStore.builder()
.baseUrl("http://localhost:8000") // Required
.collectionName("my-collection") // Required
.apiKey("optional") // For authentication
.logRequests(true) // Debug logging
.logResponses(true)
.build();
```
### PgVectorEmbeddingStore
```java
PgVectorEmbeddingStore store = PgVectorEmbeddingStore.builder()
.host("localhost") // Required
.port(5432) // Default: 5432
.database("embeddings") // Required
.user("postgres") // Required
.password("password") // Required
.table("embeddings") // Custom table name
.createTableIfNotExists(true) // Auto-create table
.dropTableIfExists(false) // Safety flag
.build();
```
### MongoDbEmbeddingStore
```java
MongoDbEmbeddingStore store = MongoDbEmbeddingStore.builder()
.databaseName("search") // Required
.collectionName("documents") // Required
.createIndex(true) // Auto-create index
.indexName("vector_index") // Index name
.indexMapping(indexMapping) // Index configuration
.fromClient(mongoClient) // Required
.build();
// Configure index mapping
IndexMapping mapping = IndexMapping.builder()
.dimension(1536) // Vector dimension
.metadataFieldNames(Set.of("userId", "source"))
.build();
```
### Neo4jEmbeddingStore
```java
Neo4jEmbeddingStore store = Neo4jEmbeddingStore.builder()
.withBasicAuth(uri, user, password) // Required
.dimension(1536) // Vector dimension
.label("Document") // Node label
.embeddingProperty("embedding") // Property name
.textProperty("text") // Text content property
.metadataPrefix("metadata_") // Metadata prefix
.build();
```
### MilvusEmbeddingStore
```java
MilvusEmbeddingStore store = MilvusEmbeddingStore.builder()
.host("localhost") // Required
.port(19530) // Default: 19530
.collectionName("documents") // Required
.dimension(1536) // Vector dimension
.indexType(IndexType.HNSW) // HNSW, IVF_FLAT, IVF_SQ8
.metricType(MetricType.COSINE) // COSINE, L2, IP
.username("root") // Optional
.password("Milvus") // Optional
.build();
```
## Metadata and Filtering
### Filter Operations
```java
// Equality
new IsEqualTo("status","active")
new
IsNotEqualTo("archived","true")
// Comparison
new
IsGreaterThan("score",0.8)
new
IsLessThanOrEqualTo("days",30)
new
IsGreaterThanOrEqualTo("priority",5)
new
IsLessThan("errorRate",0.01)
// Membership
new
IsIn("category",Arrays.asList("tech", "guide"))
new
IsNotIn("status",Arrays.asList("deleted"))
// String operations
new
ContainsString("content","Spring")
// Logical
new
And(filter1, filter2)
new
Or(filter1, filter2)
new
Not(filter1)
```
### Dynamic Filtering
```java
.dynamicFilter(query ->{
String userId = extractUserIdFromQuery(query);
return new
IsEqualTo("userId",userId);
})
```
## Integration with EmbeddingStoreIngestor
### Basic Ingestor
```java
EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder()
.embeddingModel(embeddingModel) // Required
.embeddingStore(store) // Required
.build();
IngestionResult result = ingestor.ingest(document);
```
### Advanced Ingestor
```java
EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder()
.documentTransformer(doc -> {
doc.metadata().put("ingested_date", LocalDate.now());
return doc;
})
.documentSplitter(DocumentSplitters.recursive(500, 50))
.textSegmentTransformer(segment -> {
String enhanced = "File: " + segment.metadata().getString("filename") +
"\n" + segment.text();
return TextSegment.from(enhanced, segment.metadata());
})
.embeddingModel(embeddingModel)
.embeddingStore(store)
.build();
ingestor.
ingest(documents);
```
## ContentRetriever Integration
### Basic Retriever
```java
ContentRetriever retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
.maxResults(3)
.minScore(0.7)
.build();
```
### Advanced Retriever
```java
ContentRetriever retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
.dynamicMaxResults(query -> 10)
.dynamicMinScore(query -> 0.75)
.dynamicFilter(query ->
new IsEqualTo("userId", getCurrentUserId())
)
.build();
```
## Multi-Tenant Support
### Namespace-based Isolation (Pinecone)
```java
// User 1
var store1 = PineconeEmbeddingStore.builder()
.apiKey(key)
.indexName("docs")
.namespace("user-1")
.build();
// User 2
var store2 = PineconeEmbeddingStore.builder()
.apiKey(key)
.indexName("docs")
.namespace("user-2")
.build();
```
### Metadata-based Isolation
```java
.dynamicFilter(query ->
new
IsEqualTo("userId",getContextUserId())
)
```
## Performance Optimization
### Connection Configuration
```java
// With timeout and pooling
store =QdrantEmbeddingStore.
builder()
.
host("localhost")
.
port(6333)
.
timeout(Duration.ofSeconds(30))
.
maxConnections(10)
.
build();
```
### Batch Operations
```java
// Batch add
List<Embedding> embeddings = embeddingModel.embedAll(segments).content();
List<String> ids = store.addAll(embeddings, segments);
```
### Caching Strategy
```java
// Cache results locally
Map<String, List<Content>> cache = new HashMap<>();
```
## Monitoring and Debugging
### Enable Logging
```java
ChromaEmbeddingStore store = ChromaEmbeddingStore.builder()
.baseUrl("http://localhost:8000")
.collectionName("docs")
.logRequests(true)
.logResponses(true)
.build();
```
## Best Practices
1. **Choose Right Store**: In-memory for dev, Pinecone/Qdrant for production
2. **Configure Dimension**: Match embedding model dimension (usually 1536)
3. **Set Thresholds**: Adjust minScore based on precision needs (0.7-0.85 typical)
4. **Use Metadata**: Add rich metadata for filtering and traceability
5. **Index Strategically**: Create indexes on frequently filtered fields
6. **Monitor Performance**: Track query latency and relevance metrics
7. **Plan Scaling**: Consider multi-tenancy and sharding strategies
8. **Backup Data**: Implement backup and recovery procedures
9. **Version Management**: Track embedding model versions
10. **Test Thoroughly**: Validate retrieval quality with sample queries

View File

@@ -0,0 +1,353 @@
# LangChain4j Vector Stores Configuration - Practical Examples
Production-ready examples for configuring and using various vector stores with LangChain4j.
## 1. In-Memory Vector Store (Development)
**Scenario**: Quick development and testing without external dependencies.
```java
import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.data.embedding.Embedding;
public class InMemoryStoreExample {
public static void main(String[] args) {
var store = new InMemoryEmbeddingStore<TextSegment>();
// Add embeddings
Embedding embedding1 = new Embedding(new float[]{0.1f, 0.2f, 0.3f});
String id1 = store.add("doc-001", embedding1,
TextSegment.from("Spring Boot documentation"));
// Search
EmbeddingSearchRequest request = EmbeddingSearchRequest.builder()
.queryEmbedding(embedding1)
.maxResults(5)
.build();
var results = store.search(request);
results.matches().forEach(match ->
System.out.println("Score: " + match.score())
);
// Remove
store.remove(id1);
}
}
```
## 2. Pinecone Vector Store (Production)
**Scenario**: Serverless vector database for scalable RAG.
```java
import dev.langchain4j.store.embedding.pinecone.PineconeEmbeddingStore;
public class PineconeStoreExample {
public static void main(String[] args) {
var store = PineconeEmbeddingStore.builder()
.apiKey(System.getenv("PINECONE_API_KEY"))
.indexName("my-index")
.namespace("production") // Optional: organize by namespace
.dimension(1536) // Match embedding model
.build();
// Setup embedding model and ingestor
var embeddingModel = OpenAiEmbeddingModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.modelName("text-embedding-3-small")
.build();
var ingestor = EmbeddingStoreIngestor.builder()
.embeddingModel(embeddingModel)
.embeddingStore(store)
.documentSplitter(DocumentSplitters.recursive(500, 50))
.build();
// Ingest documents
ingestor.ingest(Document.from("Your document content..."));
}
}
```
## 3. Weaviate Vector Store
**Scenario**: Open-source vector database with hybrid search.
```java
import dev.langchain4j.store.embedding.weaviate.WeaviateEmbeddingStore;
public class WeaviateStoreExample {
public static void main(String[] args) {
var store = WeaviateEmbeddingStore.builder()
.host("localhost")
.port(8080)
.scheme("http") // or "https"
.collectionName("Documents")
.useGrpc(false) // Use REST endpoint
.build();
// Use with embedding model
var embeddingModel = OpenAiEmbeddingModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.build();
// Add and search
var embedding = embeddingModel.embed("test").content();
var segment = TextSegment.from("Document content");
store.add(embedding, segment);
}
}
```
## 4. Qdrant Vector Store
**Scenario**: Fast vector search with filtering capabilities.
```java
import dev.langchain4j.store.embedding.qdrant.QdrantEmbeddingStore;
public class QdrantStoreExample {
public static void main(String[] args) {
var store = QdrantEmbeddingStore.builder()
.host("localhost")
.port(6333)
.collectionName("documents")
.https(false) // Set to true for HTTPS
.preferGrpc(true) // Use gRPC for better performance
.build();
// Configure with metadata filtering
var retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(store)
.embeddingModel(embeddingModel)
.maxResults(5)
.dynamicFilter(query ->
new IsEqualTo("source", "documentation")
)
.build();
}
}
```
## 5. Chroma Vector Store
**Scenario**: Easy-to-use local or remote vector store.
```java
import dev.langchain4j.store.embedding.chroma.ChromaEmbeddingStore;
public class ChromaStoreExample {
public static void main(String[] args) {
// Local Chroma server
var store = ChromaEmbeddingStore.builder()
.baseUrl("http://localhost:8000")
.collectionName("my-documents")
.logRequests(true)
.logResponses(true)
.build();
// Remote Chroma
var remoteStore = ChromaEmbeddingStore.builder()
.baseUrl("https://chroma.example.com")
.collectionName("production-docs")
.build();
}
}
```
## 6. PostgreSQL with pgvector
**Scenario**: Use existing PostgreSQL database for vectors.
```java
import dev.langchain4j.store.embedding.pgvector.PgVectorEmbeddingStore;
public class PostgresStoreExample {
public static void main(String[] args) {
var store = PgVectorEmbeddingStore.builder()
.host("localhost")
.port(5432)
.database("embeddings")
.user("postgres")
.password("password")
.table("embeddings")
.createTableIfNotExists(true)
.dropTableIfExists(false)
.build();
// With SSL
var sslStore = PgVectorEmbeddingStore.builder()
.host("db.example.com")
.port(5432)
.database("embeddings")
.user("postgres")
.password("password")
.sslMode("require")
.table("embeddings")
.build();
}
}
```
## 7. MongoDB Atlas Vector Search
**Scenario**: Store vectors in MongoDB with metadata.
```java
import dev.langchain4j.store.embedding.mongodb.MongoDbEmbeddingStore;
import dev.langchain4j.store.embedding.mongodb.IndexMapping;
import com.mongodb.client.MongoClient;
import com.mongodb.client.MongoClients;
public class MongoDbStoreExample {
public static void main(String[] args) {
MongoClient mongoClient = MongoClients.create(
System.getenv("MONGODB_URI")
);
var indexMapping = IndexMapping.builder()
.dimension(1536)
.metadataFieldNames(Set.of("source", "userId"))
.build();
var store = MongoDbEmbeddingStore.builder()
.databaseName("search")
.collectionName("documents")
.createIndex(true)
.indexName("vector_index")
.indexMapping(indexMapping)
.fromClient(mongoClient)
.build();
// With metadata
var segment = TextSegment.from(
"Content",
Metadata.from(Map.of("source", "docs", "userId", "123"))
);
store.add(embedding, segment);
}
}
```
## 8. Neo4j Graph + Vector Store
**Scenario**: Combine graph relationships with semantic search.
```java
import dev.langchain4j.store.embedding.neo4j.Neo4jEmbeddingStore;
import org.neo4j.driver.Driver;
import org.neo4j.driver.GraphDatabase;
public class Neo4jStoreExample {
public static void main(String[] args) {
var store = Neo4jEmbeddingStore.builder()
.withBasicAuth("bolt://localhost:7687", "neo4j", "password")
.dimension(1536)
.label("Document")
.embeddingProperty("embedding")
.textProperty("text")
.metadataPrefix("metadata_")
.build();
// Hybrid search with full-text index
var hybridStore = Neo4jEmbeddingStore.builder()
.withBasicAuth("bolt://localhost:7687", "neo4j", "password")
.dimension(1536)
.fullTextIndexName("documents_ft")
.autoCreateFullText(true)
.fullTextQuery("Spring")
.build();
}
}
```
## 9. Milvus Vector Store
**Scenario**: Open-source vector database for large-scale ML.
```java
import dev.langchain4j.store.embedding.milvus.MilvusEmbeddingStore;
import dev.langchain4j.store.embedding.milvus.IndexType;
import dev.langchain4j.store.embedding.milvus.MetricType;
public class MilvusStoreExample {
public static void main(String[] args) {
var store = MilvusEmbeddingStore.builder()
.host("localhost")
.port(19530)
.collectionName("documents")
.dimension(1536)
.indexType(IndexType.HNSW) // or IVF_FLAT, IVF_SQ8
.metricType(MetricType.COSINE) // or L2, IP
.username("root")
.password("Milvus")
.autoCreateCollection(true)
.consistencyLevel("Session")
.build();
}
}
```
## 10. Hybrid Store Configuration with Metadata
**Scenario**: Advanced setup with metadata filtering.
```java
import dev.langchain4j.store.embedding.filter.comparison.*;
public class HybridStoreExample {
public static void main(String[] args) {
// Create store
var store = QdrantEmbeddingStore.builder()
.host("localhost")
.port(6333)
.collectionName("multi_tenant_docs")
.build();
// Ingest with rich metadata
var ingestor = EmbeddingStoreIngestor.builder()
.documentTransformer(doc -> {
doc.metadata().put("userId", "user123");
doc.metadata().put("source", "api");
doc.metadata().put("created", LocalDate.now().toString());
doc.metadata().put("version", 1);
return doc;
})
.documentSplitter(DocumentSplitters.recursive(500, 50))
.embeddingModel(embeddingModel)
.embeddingStore(store)
.build();
// Setup retriever with complex filters
var retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(store)
.embeddingModel(embeddingModel)
.maxResults(5)
.dynamicFilter(query -> {
// Multi-tenant isolation
String userId = "user123";
return new And(
new IsEqualTo("userId", userId),
new IsEqualTo("version", 1),
new IsGreaterThan("score", 0.7)
);
})
.build();
}
}
```
## Performance Tuning
1. **Batch Size**: Ingest documents in batches of 100-1000
2. **Dimensionality**: Use text-embedding-3-small (1536) unless specific needs
3. **Similarity Threshold**: Adjust minScore based on precision/recall needs
4. **Indexing**: Enable appropriate indexes based on filter patterns
5. **Connection Pooling**: Configure connection pools for production
6. **Timeout**: Set appropriate timeout values for network calls
7. **Caching**: Cache frequently accessed embeddings
8. **Partitioning**: Use namespaces/databases for data isolation
9. **Monitoring**: Track query latency and error rates
10. **Replication**: Enable replication for high availability