Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:28:30 +08:00
commit 171acedaa4
220 changed files with 85967 additions and 0 deletions

View File

@@ -0,0 +1,349 @@
---
name: langchain4j-rag-implementation-patterns
description: Implement Retrieval-Augmented Generation (RAG) systems with LangChain4j. Build document ingestion pipelines, embedding stores, vector search strategies, and knowledge-enhanced AI applications. Use when creating question-answering systems over document collections or AI assistants with external knowledge bases.
allowed-tools: Read, Write, Bash
category: ai-development
tags: [langchain4j, rag, retrieval-augmented-generation, embedding, vector-search, document-ingestion, java]
version: 1.1.0
---
# LangChain4j RAG Implementation Patterns
## When to Use This Skill
Use this skill when:
- Building knowledge-based AI applications requiring external document access
- Implementing question-answering systems over large document collections
- Creating AI assistants with access to company knowledge bases
- Building semantic search capabilities for document repositories
- Implementing chat systems that reference specific information sources
- Creating AI applications requiring source attribution
- Building domain-specific AI systems with curated knowledge
- Implementing hybrid search combining vector similarity with traditional search
- Creating AI applications requiring real-time document updates
- Building multi-modal RAG systems with text, images, and other content types
## Overview
Implement complete Retrieval-Augmented Generation (RAG) systems with LangChain4j. RAG enhances language models by providing relevant context from external knowledge sources, improving accuracy and reducing hallucinations.
## Instructions
### Initialize RAG Project
Create a new Spring Boot project with required dependencies:
**pom.xml**:
```xml
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-spring-boot-starter</artifactId>
<version>1.8.0</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai</artifactId>
<version>1.8.0</version>
</dependency>
```
### Setup Document Ingestion
Configure document loading and processing:
```java
@Configuration
public class RAGConfiguration {
@Bean
public EmbeddingModel embeddingModel() {
return OpenAiEmbeddingModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.modelName("text-embedding-3-small")
.build();
}
@Bean
public EmbeddingStore<TextSegment> embeddingStore() {
return new InMemoryEmbeddingStore<>();
}
}
```
Create document ingestion service:
```java
@Service
@RequiredArgsConstructor
public class DocumentIngestionService {
private final EmbeddingModel embeddingModel;
private final EmbeddingStore<TextSegment> embeddingStore;
public void ingestDocument(String filePath, Map<String, Object> metadata) {
Document document = FileSystemDocumentLoader.loadDocument(filePath);
document.metadata().putAll(metadata);
DocumentSplitter splitter = DocumentSplitters.recursive(
500, 50, new OpenAiTokenCountEstimator("text-embedding-3-small")
);
List<TextSegment> segments = splitter.split(document);
List<Embedding> embeddings = embeddingModel.embedAll(segments).content();
embeddingStore.addAll(embeddings, segments);
}
}
```
### Configure Content Retrieval
Setup content retrieval with filtering:
```java
@Configuration
public class ContentRetrieverConfiguration {
@Bean
public ContentRetriever contentRetriever(
EmbeddingStore<TextSegment> embeddingStore,
EmbeddingModel embeddingModel) {
return EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
.maxResults(5)
.minScore(0.7)
.build();
}
}
```
### Create RAG-Enabled AI Service
Define AI service with context retrieval:
```java
interface KnowledgeAssistant {
@SystemMessage("""
You are a knowledgeable assistant with access to a comprehensive knowledge base.
When answering questions:
1. Use the provided context from the knowledge base
2. If information is not in the context, clearly state this
3. Provide accurate, helpful responses
4. When possible, reference specific sources
5. If the context is insufficient, ask for clarification
""")
String answerQuestion(String question);
}
@Service
@RequiredArgsConstructor
public class KnowledgeService {
private final KnowledgeAssistant assistant;
public KnowledgeService(ChatModel chatModel, ContentRetriever contentRetriever) {
this.assistant = AiServices.builder(KnowledgeAssistant.class)
.chatModel(chatModel)
.contentRetriever(contentRetriever)
.build();
}
public String answerQuestion(String question) {
return assistant.answerQuestion(question);
}
}
```
## Examples
### Basic Document Processing
```java
public class BasicRAGExample {
public static void main(String[] args) {
var embeddingStore = new InMemoryEmbeddingStore<TextSegment>();
var embeddingModel = OpenAiEmbeddingModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.modelName("text-embedding-3-small")
.build();
var ingestor = EmbeddingStoreIngestor.builder()
.embeddingModel(embeddingModel)
.embeddingStore(embeddingStore)
.build();
ingestor.ingest(Document.from("Spring Boot is a framework for building Java applications with minimal configuration."));
var retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
.build();
}
}
```
### Multi-Domain Assistant
```java
interface MultiDomainAssistant {
@SystemMessage("""
You are an expert assistant with access to multiple knowledge domains:
- Technical documentation
- Company policies
- Product information
- Customer support guides
Tailor your response based on the type of question and available context.
Always indicate which domain the information comes from.
""")
String answerQuestion(@MemoryId String userId, String question);
}
```
### Hierarchical RAG
```java
@Service
@RequiredArgsConstructor
public class HierarchicalRAGService {
private final EmbeddingStore<TextSegment> chunkStore;
private final EmbeddingStore<TextSegment> summaryStore;
private final EmbeddingModel embeddingModel;
public String performHierarchicalRetrieval(String query) {
List<EmbeddingMatch<TextSegment>> summaryMatches = searchSummaries(query);
List<TextSegment> relevantChunks = new ArrayList<>();
for (EmbeddingMatch<TextSegment> summaryMatch : summaryMatches) {
String documentId = summaryMatch.embedded().metadata().getString("documentId");
List<EmbeddingMatch<TextSegment>> chunkMatches = searchChunksInDocument(query, documentId);
chunkMatches.stream()
.map(EmbeddingMatch::embedded)
.forEach(relevantChunks::add);
}
return generateResponseWithChunks(query, relevantChunks);
}
}
```
## Best Practices
### Document Segmentation
- Use recursive splitting with 500-1000 token chunks for most applications
- Maintain 20-50 token overlap between chunks for context preservation
- Consider document structure (headings, paragraphs) when splitting
- Use token-aware splitters for optimal embedding generation
### Metadata Strategy
- Include rich metadata for filtering and attribution:
- User and tenant identifiers for multi-tenancy
- Document type and category classification
- Creation and modification timestamps
- Version and author information
- Confidentiality and access level tags
### Query Processing
- Implement query preprocessing and cleaning
- Consider query expansion for better recall
- Apply dynamic filtering based on user context
- Use re-ranking for improved result quality
### Performance Optimization
- Cache embeddings for repeated queries
- Use batch embedding generation for bulk operations
- Implement pagination for large result sets
- Consider asynchronous processing for long operations
## Common Patterns
### Simple RAG Pipeline
```java
@RequiredArgsConstructor
@Service
public class SimpleRAGPipeline {
private final EmbeddingModel embeddingModel;
private final EmbeddingStore<TextSegment> embeddingStore;
private final ChatModel chatModel;
public String answerQuestion(String question) {
Embedding queryEmbedding = embeddingModel.embed(question).content();
EmbeddingSearchRequest request = EmbeddingSearchRequest.builder()
.queryEmbedding(queryEmbedding)
.maxResults(3)
.build();
List<TextSegment> segments = embeddingStore.search(request).matches().stream()
.map(EmbeddingMatch::embedded)
.collect(Collectors.toList());
String context = segments.stream()
.map(TextSegment::text)
.collect(Collectors.joining("\n\n"));
return chatModel.generate(context + "\n\nQuestion: " + question + "\nAnswer:");
}
}
```
### Hybrid Search (Vector + Keyword)
```java
@Service
@RequiredArgsConstructor
public class HybridSearchService {
private final EmbeddingStore<TextSegment> vectorStore;
private final FullTextSearchEngine keywordEngine;
private final EmbeddingModel embeddingModel;
public List<Content> hybridSearch(String query, int maxResults) {
// Vector search
List<Content> vectorResults = performVectorSearch(query, maxResults);
// Keyword search
List<Content> keywordResults = performKeywordSearch(query, maxResults);
// Combine and re-rank using RRF algorithm
return combineResults(vectorResults, keywordResults, maxResults);
}
}
```
## Troubleshooting
### Common Issues
**Poor Retrieval Results**
- Check document chunk size and overlap settings
- Verify embedding model compatibility
- Ensure metadata filters are not too restrictive
- Consider adding re-ranking step
**Slow Performance**
- Use cached embeddings for frequent queries
- Optimize database indexing for vector stores
- Implement pagination for large datasets
- Consider async processing for bulk operations
**High Memory Usage**
- Use disk-based embedding stores for large datasets
- Implement proper pagination and filtering
- Clean up unused embeddings periodically
- Monitor and optimize chunk sizes
## References
- [API Reference](references/references.md) - Complete API documentation and interfaces
- [Examples](references/examples.md) - Production-ready examples and patterns
- [Official LangChain4j Documentation](https://docs.langchain4j.dev/)

View File

@@ -0,0 +1,482 @@
# LangChain4j RAG Implementation - Practical Examples
Production-ready examples for implementing Retrieval-Augmented Generation (RAG) systems with LangChain4j.
## 1. Simple In-Memory RAG
**Scenario**: Quick RAG setup with documents in memory for development/testing.
```java
import dev.langchain4j.data.document.Document;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.embedding.EmbeddingModel;
import dev.langchain4j.model.openai.OpenAiEmbeddingModel;
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.AiServices;
import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore;
import dev.langchain4j.store.embedding.EmbeddingStoreIngestor;
import dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever;
interface DocumentAssistant {
String answer(String question);
}
public class SimpleRagExample {
public static void main(String[] args) {
// Setup
var embeddingStore = new InMemoryEmbeddingStore<TextSegment>();
var embeddingModel = OpenAiEmbeddingModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.modelName("text-embedding-3-small")
.build();
var chatModel = OpenAiChatModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.modelName("gpt-4o-mini")
.build();
// Ingest documents
var ingestor = EmbeddingStoreIngestor.builder()
.embeddingModel(embeddingModel)
.embeddingStore(embeddingStore)
.build();
ingestor.ingest(Document.from("Spring Boot is a framework for building Java applications with minimal configuration."));
ingestor.ingest(Document.from("Spring Data JPA provides data access abstraction using repositories."));
ingestor.ingest(Document.from("Spring Cloud enables building distributed systems and microservices."));
// Create retriever and AI service
var contentRetriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
.maxResults(3)
.minScore(0.7)
.build();
var assistant = AiServices.builder(DocumentAssistant.class)
.chatModel(chatModel)
.contentRetriever(contentRetriever)
.build();
// Query with RAG
System.out.println(assistant.answer("What is Spring Boot?"));
System.out.println(assistant.answer("What does Spring Data JPA do?"));
}
}
```
## 2. Vector Database RAG (Pinecone)
**Scenario**: Production RAG with persistent vector database.
```java
import dev.langchain4j.store.embedding.pinecone.PineconeEmbeddingStore;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.data.document.Document;
import dev.langchain4j.data.document.Metadata;
public class PineconeRagExample {
public static void main(String[] args) {
// Production vector store
var embeddingStore = PineconeEmbeddingStore.builder()
.apiKey(System.getenv("PINECONE_API_KEY"))
.index("docs-index")
.namespace("production")
.build();
var embeddingModel = OpenAiEmbeddingModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.build();
// Ingest with metadata
var ingestor = EmbeddingStoreIngestor.builder()
.documentTransformer(doc -> {
doc.metadata().put("source", "documentation");
doc.metadata().put("date", LocalDate.now().toString());
return doc;
})
.documentSplitter(DocumentSplitters.recursive(1000, 200))
.embeddingModel(embeddingModel)
.embeddingStore(embeddingStore)
.build();
ingestor.ingest(Document.from("Your large document..."));
// Retrieve with filters
var retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
.maxResults(5)
.dynamicFilter(query ->
new IsEqualTo("source", "documentation")
)
.build();
}
}
```
## 3. Document Loading and Splitting
**Scenario**: Load documents from various sources and split intelligently.
```java
import dev.langchain4j.data.document.Document;
import dev.langchain4j.data.document.DocumentSplitter;
import dev.langchain4j.data.document.loader.FileSystemDocumentLoader;
import dev.langchain4j.data.document.splitter.DocumentSplitters;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.openai.OpenAiTokenCountEstimator;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
public class DocumentProcessingExample {
public static void main(String[] args) {
// Load from filesystem
Path docPath = Paths.get("documents");
List<Document> documents = FileSystemDocumentLoader.load(docPath);
// Smart recursive splitting with token counting
DocumentSplitter splitter = DocumentSplitters.recursive(
500, // Max tokens per segment
50, // Overlap tokens
new OpenAiTokenCountEstimator("gpt-4o-mini")
);
// Process documents
for (Document doc : documents) {
List<TextSegment> segments = splitter.split(doc);
System.out.println("Document split into " + segments.size() + " segments");
segments.forEach(segment -> {
System.out.println("Text: " + segment.text());
System.out.println("Metadata: " + segment.metadata());
});
}
// Alternative: Character-based splitting
DocumentSplitter charSplitter = DocumentSplitters.recursive(
1000, // Max characters
100 // Overlap characters
);
// Alternative: Paragraph-based splitting
DocumentSplitter paraSplitter = DocumentSplitters.byParagraph(500, 50);
}
}
```
## 4. Metadata Filtering in RAG
**Scenario**: Search with complex metadata filters for multi-tenant RAG.
```java
import dev.langchain4j.store.embedding.filter.comparison.*;
import dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever;
public class MetadataFilteringExample {
public static void main(String[] args) {
var retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
// Single filter: user isolation
.filter(new IsEqualTo("userId", "user123"))
// Complex AND filter
.filter(new And(
new IsEqualTo("department", "engineering"),
new IsEqualTo("status", "active")
))
// OR filter: multiple categories
.filter(new Or(
new IsEqualTo("category", "tutorial"),
new IsEqualTo("category", "guide")
))
// NOT filter: exclude deprecated
.filter(new Not(
new IsEqualTo("deprecated", "true")
))
// Numeric filters
.filter(new IsGreaterThan("relevance", 0.8))
.filter(new IsLessThanOrEqualTo("createdDaysAgo", 30))
// Multiple conditions
.dynamicFilter(query -> {
String userId = extractUserFromQuery(query);
return new And(
new IsEqualTo("userId", userId),
new IsGreaterThan("score", 0.7)
);
})
.build();
}
private static String extractUserFromQuery(Object query) {
// Extract user context
return "user123";
}
}
```
## 5. Document Transformation Pipeline
**Scenario**: Transform documents with custom metadata before ingestion.
```java
import dev.langchain4j.store.embedding.EmbeddingStoreIngestor;
import dev.langchain4j.data.document.Metadata;
import dev.langchain4j.data.segment.TextSegment;
import java.time.LocalDate;
public class DocumentTransformationExample {
public static void main(String[] args) {
var ingestor = EmbeddingStoreIngestor.builder()
// Add metadata to each document
.documentTransformer(doc -> {
doc.metadata().put("ingested_date", LocalDate.now().toString());
doc.metadata().put("source_system", "internal");
doc.metadata().put("version", "1.0");
return doc;
})
// Split documents intelligently
.documentSplitter(DocumentSplitters.recursive(500, 50))
// Transform each segment (e.g., add filename)
.textSegmentTransformer(segment -> {
String fileName = segment.metadata().getString("file_name", "unknown");
String enrichedText = "File: " + fileName + "\n" + segment.text();
return TextSegment.from(enrichedText, segment.metadata());
})
.embeddingModel(embeddingModel)
.embeddingStore(embeddingStore)
.build();
// Ingest with tracking
IngestionResult result = ingestor.ingest(document);
System.out.println("Tokens ingested: " + result.tokenUsage().totalTokenCount());
}
}
```
## 6. Hybrid Search (Vector + Full-Text)
**Scenario**: Combine semantic search with keyword search for better recall.
```java
import dev.langchain4j.store.embedding.neo4j.Neo4jEmbeddingStore;
public class HybridSearchExample {
public static void main(String[] args) {
// Configure Neo4j for hybrid search
var embeddingStore = Neo4jEmbeddingStore.builder()
.withBasicAuth("bolt://localhost:7687", "neo4j", "password")
.dimension(1536)
// Enable full-text search
.fullTextIndexName("documents_fulltext")
.autoCreateFullText(true)
// Query for full-text context
.fullTextQuery("Spring OR Boot")
.build();
var retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
.maxResults(5)
.build();
// Search combines both vector similarity and full-text keywords
}
}
```
## 7. Advanced RAG with Query Transformation
**Scenario**: Transform user queries before retrieval for better results.
```java
import dev.langchain4j.rag.DefaultRetrievalAugmentor;
import dev.langchain4j.rag.query.transformer.CompressingQueryTransformer;
import dev.langchain4j.rag.content.aggregator.ReRankingContentAggregator;
import dev.langchain4j.model.cohere.CohereScoringModel;
public class AdvancedRagExample {
public static void main(String[] args) {
// Scoring model for re-ranking
var scoringModel = CohereScoringModel.builder()
.apiKey(System.getenv("COHERE_API_KEY"))
.build();
// Advanced retrieval augmentor
var augmentor = DefaultRetrievalAugmentor.builder()
// Transform query for better context
.queryTransformer(new CompressingQueryTransformer(chatModel))
// Retrieve relevant content
.contentRetriever(EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
.maxResults(10)
.minScore(0.6)
.build())
// Re-rank results by relevance
.contentAggregator(ReRankingContentAggregator.builder()
.scoringModel(scoringModel)
.minScore(0.8)
.build())
.build();
// Use with AI Service
var assistant = AiServices.builder(QuestionAnswering.class)
.chatModel(chatModel)
.retrievalAugmentor(augmentor)
.build();
}
}
```
## 8. Multi-User RAG with Isolation
**Scenario**: Per-user vector stores for data isolation.
```java
import dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever;
import java.util.HashMap;
import java.util.Map;
public class MultiUserRagExample {
private final Map<String, EmbeddingStore<TextSegment>> userStores = new HashMap<>();
public void ingestForUser(String userId, Document document) {
var store = userStores.computeIfAbsent(userId,
k -> new InMemoryEmbeddingStore<>());
var ingestor = EmbeddingStoreIngestor.builder()
.embeddingModel(embeddingModel)
.embeddingStore(store)
.build();
ingestor.ingest(document);
}
public String askQuestion(String userId, String question) {
var store = userStores.get(userId);
var retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(store)
.embeddingModel(embeddingModel)
.maxResults(3)
.build();
var assistant = AiServices.builder(QuestionAnswering.class)
.chatModel(chatModel)
.contentRetriever(retriever)
.build();
return assistant.answer(question);
}
}
```
## 9. Streaming RAG with Content Access
**Scenario**: Stream RAG responses while accessing retrieved content.
```java
import dev.langchain4j.service.TokenStream;
interface StreamingRagAssistant {
TokenStream streamAnswer(String question);
}
public class StreamingRagExample {
public static void main(String[] args) {
var assistant = AiServices.builder(StreamingRagAssistant.class)
.streamingChatModel(streamingModel)
.contentRetriever(contentRetriever)
.build();
assistant.streamAnswer("What is Spring Boot?")
.onRetrieved(contents -> {
System.out.println("=== Retrieved Content ===");
contents.forEach(content ->
System.out.println("Score: " + content.score() +
", Text: " + content.textSegment().text()));
})
.onNext(token -> System.out.print(token))
.onCompleteResponse(response ->
System.out.println("\n=== Complete ==="))
.onError(error -> System.err.println("Error: " + error))
.start();
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}
```
## 10. Batch Document Ingestion
**Scenario**: Efficiently ingest large document collections.
```java
import dev.langchain4j.data.document.Document;
import java.util.List;
import java.util.ArrayList;
public class BatchIngestionExample {
public static void main(String[] args) {
var ingestor = EmbeddingStoreIngestor.builder()
.embeddingModel(embeddingModel)
.embeddingStore(embeddingStore)
.documentSplitter(DocumentSplitters.recursive(500, 50))
.build();
// Load batch of documents
List<Document> documents = new ArrayList<>();
for (int i = 1; i <= 100; i++) {
documents.add(Document.from("Content " + i));
}
// Ingest all at once
IngestionResult result = ingestor.ingest(documents);
System.out.println("Documents ingested: " + documents.size());
System.out.println("Total tokens: " + result.tokenUsage().totalTokenCount());
// Track progress
long tokensPerDoc = result.tokenUsage().totalTokenCount() / documents.size();
System.out.println("Average tokens per document: " + tokensPerDoc);
}
}
```
## Performance Considerations
1. **Batch Processing**: Ingest documents in batches to optimize embedding API calls
2. **Document Splitting**: Use recursive splitting for better semantic chunks
3. **Metadata**: Add minimal metadata to reduce embedding overhead
4. **Vector DB**: Choose appropriate vector DB based on scale (in-memory for dev, Pinecone/Weaviate for prod)
5. **Similarity Threshold**: Adjust minScore based on use case (0.7-0.85 typical)
6. **Max Results**: Return top 3-5 results unless specific needs require more
7. **Caching**: Cache frequently retrieved content to reduce API calls
8. **Async Ingestion**: Use async ingestion for large datasets
9. **Monitoring**: Track token usage and retrieval quality metrics
10. **Testing**: Use in-memory store for unit tests, external DB for integration tests

View File

@@ -0,0 +1,506 @@
# LangChain4j RAG Implementation - API References
Complete API reference for implementing RAG systems with LangChain4j.
## Document Loading
### Document Loaders
**FileSystemDocumentLoader**: Load from filesystem.
```java
import dev.langchain4j.data.document.loader.FileSystemDocumentLoader;
import java.nio.file.Path;
List<Document> documents = FileSystemDocumentLoader.load("documents");
List<Document> single = FileSystemDocumentLoader.load("document.pdf");
```
**ClassPathDocumentLoader**: Load from classpath resources.
```java
List<Document> resources = ClassPathDocumentLoader.load("documents");
```
**UrlDocumentLoader**: Load from web URLs.
```java
Document webDoc = UrlDocumentLoader.load("https://example.com/doc.html");
```
## Document Splitting
### DocumentSplitter Interface
```java
interface DocumentSplitter {
List<TextSegment> split(Document document);
List<TextSegment> splitAll(Collection<Document> documents);
}
```
### DocumentSplitters Factory
**Recursive Split**: Smart recursive splitting by paragraphs, sentences, words.
```java
DocumentSplitter splitter = DocumentSplitters.recursive(
500, // Max segment size (tokens or characters)
50 // Overlap size
);
// With token counting
DocumentSplitter splitter = DocumentSplitters.recursive(
500,
50,
new OpenAiTokenCountEstimator("gpt-4o-mini")
);
```
**Paragraph Split**: Split by paragraphs.
```java
DocumentSplitter splitter = DocumentSplitters.byParagraph(500, 50);
```
**Sentence Split**: Split by sentences.
```java
DocumentSplitter splitter = DocumentSplitters.bySentence(500, 50);
```
**Line Split**: Split by lines.
```java
DocumentSplitter splitter = DocumentSplitters.byLine(500, 50);
```
## Embedding Models
### EmbeddingModel Interface
```java
public interface EmbeddingModel {
// Embed single text
Response<Embedding> embed(String text);
Response<Embedding> embed(TextSegment textSegment);
// Batch embedding
Response<List<Embedding>> embedAll(List<TextSegment> textSegments);
// Model dimension
int dimension();
}
```
### OpenAI Embedding Model
```java
EmbeddingModel model = OpenAiEmbeddingModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.modelName("text-embedding-3-small") // or text-embedding-3-large
.dimensions(512) // Optional: reduce dimensions
.timeout(Duration.ofSeconds(30))
.logRequests(true)
.logResponses(true)
.build();
```
### Other Embedding Models
```java
// Google Vertex AI
EmbeddingModel google = VertexAiEmbeddingModel.builder()
.project("PROJECT_ID")
.location("us-central1")
.modelName("textembedding-gecko")
.build();
// Ollama (local)
EmbeddingModel ollama = OllamaEmbeddingModel.builder()
.baseUrl("http://localhost:11434")
.modelName("all-minilm")
.build();
// AllMiniLmL6V2 (offline)
EmbeddingModel offline = new AllMiniLmL6V2EmbeddingModel();
```
## Vector Stores (EmbeddingStore)
### EmbeddingStore Interface
```java
public interface EmbeddingStore<Embedded> {
// Add embeddings
String add(Embedding embedding);
String add(String id, Embedding embedding);
String add(Embedding embedding, Embedded embedded);
List<String> addAll(List<Embedding> embeddings);
List<String> addAll(List<Embedding> embeddings, List<Embedded> embeddeds);
List<String> addAll(List<String> ids, List<Embedding> embeddings, List<Embedded> embeddeds);
// Search embeddings
EmbeddingSearchResult<Embedded> search(EmbeddingSearchRequest request);
// Remove embeddings
void remove(String id);
void removeAll(Collection<String> ids);
void removeAll(Filter filter);
void removeAll();
}
```
### In-Memory Store
```java
EmbeddingStore<TextSegment> store = new InMemoryEmbeddingStore<>();
// Merge stores
InMemoryEmbeddingStore<TextSegment> merged = InMemoryEmbeddingStore.merge(
store1, store2, store3
);
```
### Pinecone
```java
EmbeddingStore<TextSegment> store = PineconeEmbeddingStore.builder()
.apiKey(System.getenv("PINECONE_API_KEY"))
.index("my-index")
.namespace("production")
.environment("gcp-starter") // or "aws-us-east-1"
.build();
```
### Weaviate
```java
EmbeddingStore<TextSegment> store = WeaviateEmbeddingStore.builder()
.host("localhost")
.port(8080)
.scheme("http")
.collectionName("Documents")
.build();
```
### Qdrant
```java
EmbeddingStore<TextSegment> store = QdrantEmbeddingStore.builder()
.host("localhost")
.port(6333)
.collectionName("documents")
.build();
```
### Chroma
```java
EmbeddingStore<TextSegment> store = ChromaEmbeddingStore.builder()
.baseUrl("http://localhost:8000")
.collectionName("my-collection")
.build();
```
### Neo4j
```java
EmbeddingStore<TextSegment> store = Neo4jEmbeddingStore.builder()
.withBasicAuth("bolt://localhost:7687", "neo4j", "password")
.dimension(1536)
.label("Document")
.build();
```
### MongoDB Atlas
```java
EmbeddingStore<TextSegment> store = MongoDbEmbeddingStore.builder()
.databaseName("search")
.collectionName("documents")
.indexName("vector_index")
.createIndex(true)
.fromClient(mongoClient)
.build();
```
### PostgreSQL (pgvector)
```java
EmbeddingStore<TextSegment> store = PgVectorEmbeddingStore.builder()
.host("localhost")
.port(5432)
.database("embeddings")
.user("postgres")
.password("password")
.table("embeddings")
.createTableIfNotExists(true)
.build();
```
### Milvus
```java
EmbeddingStore<TextSegment> store = MilvusEmbeddingStore.builder()
.host("localhost")
.port(19530)
.collectionName("documents")
.dimension(1536)
.build();
```
## Document Ingestion
### EmbeddingStoreIngestor
```java
public class EmbeddingStoreIngestor {
public static Builder builder();
public IngestionResult ingest(Document document);
public IngestionResult ingest(Document... documents);
public IngestionResult ingest(Collection<Document> documents);
}
```
### Building an Ingestor
```java
EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder()
// Document transformation
.documentTransformer(doc -> {
doc.metadata().put("source", "manual");
return doc;
})
// Document splitting strategy
.documentSplitter(DocumentSplitters.recursive(500, 50))
// Text segment transformation
.textSegmentTransformer(segment -> {
String enhanced = "Category: Spring\n" + segment.text();
return TextSegment.from(enhanced, segment.metadata());
})
// Embedding model (required)
.embeddingModel(embeddingModel)
// Embedding store (required)
.embeddingStore(embeddingStore)
.build();
```
### IngestionResult
```java
IngestionResult result = ingestor.ingest(documents);
// Access results
TokenUsage usage = result.tokenUsage();
long totalTokens = usage.totalTokenCount();
long inputTokens = usage.inputTokenCount();
```
## Content Retrieval
### EmbeddingSearchRequest
```java
EmbeddingSearchRequest request = EmbeddingSearchRequest.builder()
.queryEmbedding(embedding) // Required
.maxResults(5) // Default: 3
.minScore(0.7) // Threshold 0-1
.filter(new IsEqualTo("category", "tutorial"))
.build();
```
### EmbeddingSearchResult
```java
EmbeddingSearchResult<TextSegment> result = store.search(request);
List<EmbeddingMatch<TextSegment>> matches = result.matches();
for (EmbeddingMatch<TextSegment> match : matches) {
double score = match.score(); // Relevance 0-1
TextSegment segment = match.embedded(); // Retrieved content
String id = match.embeddingId(); // Store ID
}
```
### ContentRetriever Interface
```java
public interface ContentRetriever {
Content retrieve(Query query);
List<Content> retrieveAll(List<Query> queries);
}
```
### EmbeddingStoreContentRetriever
```java
ContentRetriever retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
// Static configuration
.maxResults(5)
.minScore(0.7)
// Dynamic configuration per query
.dynamicMaxResults(query -> 10)
.dynamicMinScore(query -> 0.8)
.dynamicFilter(query ->
new IsEqualTo("userId", extractUserId(query))
)
.build();
```
## Advanced RAG
### RetrievalAugmentor
```java
public interface RetrievalAugmentor {
AugmentationResult augment(UserMessage message);
AugmentationResult augmentAll(List<UserMessage> messages);
}
```
### DefaultRetrievalAugmentor
```java
RetrievalAugmentor augmentor = DefaultRetrievalAugmentor.builder()
// Query transformation
.queryTransformer(new CompressingQueryTransformer(chatModel))
// Content retrieval
.contentRetriever(contentRetriever)
// Content aggregation and re-ranking
.contentAggregator(ReRankingContentAggregator.builder()
.scoringModel(scoringModel)
.minScore(0.8)
.build())
// Parallelization
.executor(customExecutor)
.build();
```
### Use with AI Services
```java
Assistant assistant = AiServices.builder(Assistant.class)
.chatModel(chatModel)
.retrievalAugmentor(augmentor)
.build();
```
## Metadata and Filtering
### Metadata Object
```java
// Create from map
Metadata meta = Metadata.from(Map.of(
"userId", "user123",
"category", "tutorial",
"score", 0.95
));
// Add entries
meta.put("status", "active");
meta.put("version", 2);
// Retrieve entries
String userId = meta.getString("userId");
int version = meta.getInt("version");
double score = meta.getDouble("score");
// Check existence
boolean has = meta.containsKey("userId");
// Remove entry
meta.remove("userId");
// Merge
Metadata other = Metadata.from(Map.of("source", "db"));
meta.merge(other);
```
### Filter Operations
```java
import dev.langchain4j.store.embedding.filter.comparison.*;
import dev.langchain4j.store.embedding.filter.logical.*;
// Equality
Filter filter = new IsEqualTo("status", "active");
Filter filter = new IsNotEqualTo("deprecated", "true");
// Comparison
Filter filter = new IsGreaterThan("score", 0.8);
Filter filter = new IsLessThanOrEqualTo("daysOld", 30);
Filter filter = new IsGreaterThanOrEqualTo("priority", 5);
Filter filter = new IsLessThan("errorRate", 0.01);
// Membership
Filter filter = new IsIn("category", Arrays.asList("tech", "guide"));
Filter filter = new IsNotIn("status", Arrays.asList("archived"));
// String operations
Filter filter = new ContainsString("content", "Spring");
// Logical operations
Filter filter = new And(
new IsEqualTo("userId", "123"),
new IsGreaterThan("score", 0.7)
);
Filter filter = new Or(
new IsEqualTo("type", "doc"),
new IsEqualTo("type", "guide")
);
Filter filter = new Not(new IsEqualTo("archived", "true"));
```
## TextSegment
### Creating TextSegments
```java
// Text only
TextSegment segment = TextSegment.from("This is the content");
// With metadata
Metadata metadata = Metadata.from(Map.of("source", "docs"));
TextSegment segment = TextSegment.from("Content", metadata);
// Accessing
String text = segment.text();
Metadata meta = segment.metadata();
```
## Best Practices
1. **Chunk Size**: Use 300-500 tokens per chunk for optimal balance
2. **Overlap**: Use 10-50 token overlap for semantic continuity
3. **Metadata**: Include source and timestamp for traceability
4. **Batch Processing**: Ingest documents in batches when possible
5. **Similarity Threshold**: Adjust minScore (0.7-0.85) based on precision/recall needs
6. **Vector DB Selection**: In-memory for dev/test, Pinecone/Qdrant for production
7. **Filtering**: Pre-filter by metadata to reduce search space
8. **Re-ranking**: Use scoring models for better relevance in production
9. **Monitoring**: Track retrieval quality metrics
10. **Testing**: Use small in-memory stores for unit tests
## Performance Tips
- Use recursive splitting for semantic coherence
- Enable batch processing for large datasets
- Use dynamic max results based on query complexity
- Cache embedding model for frequently accessed content
- Implement async ingestion for large document collections
- Monitor token usage for cost optimization
- Use appropriate vector DB indexes for scale