Initial commit
This commit is contained in:
86
skills/ai/rag/references/vector-databases.md
Normal file
86
skills/ai/rag/references/vector-databases.md
Normal file
@@ -0,0 +1,86 @@
|
||||
# Vector Database Comparison and Configuration
|
||||
|
||||
## Overview
|
||||
Vector databases store and efficiently retrieve document embeddings for semantic search in RAG systems.
|
||||
|
||||
## Popular Vector Database Options
|
||||
|
||||
### 1. Pinecone
|
||||
- **Type**: Managed cloud service
|
||||
- **Features**: Scalable, fast queries, managed infrastructure
|
||||
- **Use Case**: Production applications requiring high availability
|
||||
|
||||
### 2. Weaviate
|
||||
- **Type**: Open-source, hybrid search
|
||||
- **Features**: Combines vector and keyword search, GraphQL API
|
||||
- **Use Case**: Applications needing both semantic and traditional search
|
||||
|
||||
### 3. Milvus
|
||||
- **Type**: High performance, on-premise
|
||||
- **Features**: Distributed architecture, GPU acceleration
|
||||
- **Use Case**: Large-scale deployments with custom infrastructure
|
||||
|
||||
### 4. Chroma
|
||||
- **Type**: Lightweight, easy to use
|
||||
- **Features**: Local deployment, simple API
|
||||
- **Use Case**: Development and small-scale applications
|
||||
|
||||
### 5. Qdrant
|
||||
- **Type**: Fast, filtered search
|
||||
- **Features**: Advanced filtering, payload support
|
||||
- **Use Case**: Applications requiring complex metadata filtering
|
||||
|
||||
### 6. FAISS
|
||||
- **Type**: Meta's library, local deployment
|
||||
- **Features**: High performance, CPU/GPU optimized
|
||||
- **Use Case**: Research and applications needing full control
|
||||
|
||||
## Configuration Examples
|
||||
|
||||
### Pinecone Setup
|
||||
```python
|
||||
import pinecone
|
||||
from langchain.vectorstores import Pinecone
|
||||
|
||||
pinecone.init(api_key="your-api-key", environment="us-west1-gcp")
|
||||
index = pinecone.Index("your-index-name")
|
||||
vectorstore = Pinecone(index, embeddings.embed_query, "text")
|
||||
```
|
||||
|
||||
### Weaviate Setup
|
||||
```python
|
||||
import weaviate
|
||||
from langchain.vectorstores import Weaviate
|
||||
|
||||
client = weaviate.Client("http://localhost:8080")
|
||||
vectorstore = Weaviate(client, "Document", "content", embeddings)
|
||||
```
|
||||
|
||||
### Chroma Local Setup
|
||||
```python
|
||||
from langchain.vectorstores import Chroma
|
||||
|
||||
vectorstore = Chroma(
|
||||
collection_name="my_collection",
|
||||
embedding_function=embeddings,
|
||||
persist_directory="./chroma_db"
|
||||
)
|
||||
```
|
||||
|
||||
## Selection Criteria
|
||||
|
||||
1. **Scale**: Number of documents and expected query volume
|
||||
2. **Performance**: Latency requirements and throughput needs
|
||||
3. **Deployment**: Cloud vs on-premise preferences
|
||||
4. **Features**: Filtering, hybrid search, metadata support
|
||||
5. **Cost**: Budget constraints and operational overhead
|
||||
6. **Maintenance**: Team expertise and available resources
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Indexing Strategy**: Choose appropriate distance metrics (cosine, euclidean)
|
||||
2. **Sharding**: Distribute data for large-scale deployments
|
||||
3. **Monitoring**: Track query performance and system health
|
||||
4. **Backups**: Implement regular backup procedures
|
||||
5. **Security**: Secure access to sensitive data
|
||||
6. **Optimization**: Tune parameters for your specific use case
|
||||
Reference in New Issue
Block a user