11 KiB
11 KiB
LangChain4j Vector Stores Configuration - Practical Examples
Production-ready examples for configuring and using various vector stores with LangChain4j.
1. In-Memory Vector Store (Development)
Scenario: Quick development and testing without external dependencies.
import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.data.embedding.Embedding;
public class InMemoryStoreExample {
public static void main(String[] args) {
var store = new InMemoryEmbeddingStore<TextSegment>();
// Add embeddings
Embedding embedding1 = new Embedding(new float[]{0.1f, 0.2f, 0.3f});
String id1 = store.add("doc-001", embedding1,
TextSegment.from("Spring Boot documentation"));
// Search
EmbeddingSearchRequest request = EmbeddingSearchRequest.builder()
.queryEmbedding(embedding1)
.maxResults(5)
.build();
var results = store.search(request);
results.matches().forEach(match ->
System.out.println("Score: " + match.score())
);
// Remove
store.remove(id1);
}
}
2. Pinecone Vector Store (Production)
Scenario: Serverless vector database for scalable RAG.
import dev.langchain4j.store.embedding.pinecone.PineconeEmbeddingStore;
public class PineconeStoreExample {
public static void main(String[] args) {
var store = PineconeEmbeddingStore.builder()
.apiKey(System.getenv("PINECONE_API_KEY"))
.indexName("my-index")
.namespace("production") // Optional: organize by namespace
.dimension(1536) // Match embedding model
.build();
// Setup embedding model and ingestor
var embeddingModel = OpenAiEmbeddingModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.modelName("text-embedding-3-small")
.build();
var ingestor = EmbeddingStoreIngestor.builder()
.embeddingModel(embeddingModel)
.embeddingStore(store)
.documentSplitter(DocumentSplitters.recursive(500, 50))
.build();
// Ingest documents
ingestor.ingest(Document.from("Your document content..."));
}
}
3. Weaviate Vector Store
Scenario: Open-source vector database with hybrid search.
import dev.langchain4j.store.embedding.weaviate.WeaviateEmbeddingStore;
public class WeaviateStoreExample {
public static void main(String[] args) {
var store = WeaviateEmbeddingStore.builder()
.host("localhost")
.port(8080)
.scheme("http") // or "https"
.collectionName("Documents")
.useGrpc(false) // Use REST endpoint
.build();
// Use with embedding model
var embeddingModel = OpenAiEmbeddingModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.build();
// Add and search
var embedding = embeddingModel.embed("test").content();
var segment = TextSegment.from("Document content");
store.add(embedding, segment);
}
}
4. Qdrant Vector Store
Scenario: Fast vector search with filtering capabilities.
import dev.langchain4j.store.embedding.qdrant.QdrantEmbeddingStore;
public class QdrantStoreExample {
public static void main(String[] args) {
var store = QdrantEmbeddingStore.builder()
.host("localhost")
.port(6333)
.collectionName("documents")
.https(false) // Set to true for HTTPS
.preferGrpc(true) // Use gRPC for better performance
.build();
// Configure with metadata filtering
var retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(store)
.embeddingModel(embeddingModel)
.maxResults(5)
.dynamicFilter(query ->
new IsEqualTo("source", "documentation")
)
.build();
}
}
5. Chroma Vector Store
Scenario: Easy-to-use local or remote vector store.
import dev.langchain4j.store.embedding.chroma.ChromaEmbeddingStore;
public class ChromaStoreExample {
public static void main(String[] args) {
// Local Chroma server
var store = ChromaEmbeddingStore.builder()
.baseUrl("http://localhost:8000")
.collectionName("my-documents")
.logRequests(true)
.logResponses(true)
.build();
// Remote Chroma
var remoteStore = ChromaEmbeddingStore.builder()
.baseUrl("https://chroma.example.com")
.collectionName("production-docs")
.build();
}
}
6. PostgreSQL with pgvector
Scenario: Use existing PostgreSQL database for vectors.
import dev.langchain4j.store.embedding.pgvector.PgVectorEmbeddingStore;
public class PostgresStoreExample {
public static void main(String[] args) {
var store = PgVectorEmbeddingStore.builder()
.host("localhost")
.port(5432)
.database("embeddings")
.user("postgres")
.password("password")
.table("embeddings")
.createTableIfNotExists(true)
.dropTableIfExists(false)
.build();
// With SSL
var sslStore = PgVectorEmbeddingStore.builder()
.host("db.example.com")
.port(5432)
.database("embeddings")
.user("postgres")
.password("password")
.sslMode("require")
.table("embeddings")
.build();
}
}
7. MongoDB Atlas Vector Search
Scenario: Store vectors in MongoDB with metadata.
import dev.langchain4j.store.embedding.mongodb.MongoDbEmbeddingStore;
import dev.langchain4j.store.embedding.mongodb.IndexMapping;
import com.mongodb.client.MongoClient;
import com.mongodb.client.MongoClients;
public class MongoDbStoreExample {
public static void main(String[] args) {
MongoClient mongoClient = MongoClients.create(
System.getenv("MONGODB_URI")
);
var indexMapping = IndexMapping.builder()
.dimension(1536)
.metadataFieldNames(Set.of("source", "userId"))
.build();
var store = MongoDbEmbeddingStore.builder()
.databaseName("search")
.collectionName("documents")
.createIndex(true)
.indexName("vector_index")
.indexMapping(indexMapping)
.fromClient(mongoClient)
.build();
// With metadata
var segment = TextSegment.from(
"Content",
Metadata.from(Map.of("source", "docs", "userId", "123"))
);
store.add(embedding, segment);
}
}
8. Neo4j Graph + Vector Store
Scenario: Combine graph relationships with semantic search.
import dev.langchain4j.store.embedding.neo4j.Neo4jEmbeddingStore;
import org.neo4j.driver.Driver;
import org.neo4j.driver.GraphDatabase;
public class Neo4jStoreExample {
public static void main(String[] args) {
var store = Neo4jEmbeddingStore.builder()
.withBasicAuth("bolt://localhost:7687", "neo4j", "password")
.dimension(1536)
.label("Document")
.embeddingProperty("embedding")
.textProperty("text")
.metadataPrefix("metadata_")
.build();
// Hybrid search with full-text index
var hybridStore = Neo4jEmbeddingStore.builder()
.withBasicAuth("bolt://localhost:7687", "neo4j", "password")
.dimension(1536)
.fullTextIndexName("documents_ft")
.autoCreateFullText(true)
.fullTextQuery("Spring")
.build();
}
}
9. Milvus Vector Store
Scenario: Open-source vector database for large-scale ML.
import dev.langchain4j.store.embedding.milvus.MilvusEmbeddingStore;
import dev.langchain4j.store.embedding.milvus.IndexType;
import dev.langchain4j.store.embedding.milvus.MetricType;
public class MilvusStoreExample {
public static void main(String[] args) {
var store = MilvusEmbeddingStore.builder()
.host("localhost")
.port(19530)
.collectionName("documents")
.dimension(1536)
.indexType(IndexType.HNSW) // or IVF_FLAT, IVF_SQ8
.metricType(MetricType.COSINE) // or L2, IP
.username("root")
.password("Milvus")
.autoCreateCollection(true)
.consistencyLevel("Session")
.build();
}
}
10. Hybrid Store Configuration with Metadata
Scenario: Advanced setup with metadata filtering.
import dev.langchain4j.store.embedding.filter.comparison.*;
public class HybridStoreExample {
public static void main(String[] args) {
// Create store
var store = QdrantEmbeddingStore.builder()
.host("localhost")
.port(6333)
.collectionName("multi_tenant_docs")
.build();
// Ingest with rich metadata
var ingestor = EmbeddingStoreIngestor.builder()
.documentTransformer(doc -> {
doc.metadata().put("userId", "user123");
doc.metadata().put("source", "api");
doc.metadata().put("created", LocalDate.now().toString());
doc.metadata().put("version", 1);
return doc;
})
.documentSplitter(DocumentSplitters.recursive(500, 50))
.embeddingModel(embeddingModel)
.embeddingStore(store)
.build();
// Setup retriever with complex filters
var retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(store)
.embeddingModel(embeddingModel)
.maxResults(5)
.dynamicFilter(query -> {
// Multi-tenant isolation
String userId = "user123";
return new And(
new IsEqualTo("userId", userId),
new IsEqualTo("version", 1),
new IsGreaterThan("score", 0.7)
);
})
.build();
}
}
Performance Tuning
- Batch Size: Ingest documents in batches of 100-1000
- Dimensionality: Use text-embedding-3-small (1536) unless specific needs
- Similarity Threshold: Adjust minScore based on precision/recall needs
- Indexing: Enable appropriate indexes based on filter patterns
- Connection Pooling: Configure connection pools for production
- Timeout: Set appropriate timeout values for network calls
- Caching: Cache frequently accessed embeddings
- Partitioning: Use namespaces/databases for data isolation
- Monitoring: Track query latency and error rates
- Replication: Enable replication for high availability