Files
gh-giuseppe-trisciuoglio-de…/skills/langchain4j-tool-function-calling-patterns/SKILL.md
2025-11-29 18:28:34 +08:00

359 lines
9.7 KiB
Markdown

---
name: langchain4j-tool-function-calling-patterns
description: Tool and function calling patterns with LangChain4j. Define tools, handle function calls, and integrate with LLM agents. Use when building agentic applications that interact with tools.
category: ai-development
tags: [langchain4j, tools, function-calling, "@Tool", ToolProvider, ToolExecutor, dynamic-tools, parameter-descriptions, java]
version: 1.1.0
allowed-tools: Read, Write, Bash, WebFetch
---
# LangChain4j Tool & Function Calling Patterns
Define tools and enable AI agents to interact with external systems, APIs, and services using LangChain4j's annotation-based and programmatic tool system.
## When to Use This Skill
Use this skill when:
- Building AI applications that need to interact with external APIs and services
- Creating AI assistants that can perform actions beyond text generation
- Implementing AI systems that need access to real-time data (weather, stocks, etc.)
- Building multi-agent systems where agents can use specialized tools
- Creating AI applications with database read/write capabilities
- Implementing AI systems that need to integrate with existing business systems
- Building context-aware AI applications where tool availability depends on user state
- Developing production AI applications that require robust error handling and monitoring
## Setup and Configuration
### Basic Tool Registration
```java
// Define tools using @Tool annotation
public class CalculatorTools {
@Tool("Add two numbers")
public double add(double a, double b) {
return a + b;
}
}
// Register with AiServices builder
interface MathAssistant {
String ask(String question);
}
MathAssistant assistant = AiServices.builder(MathAssistant.class)
.chatModel(chatModel)
.tools(new CalculatorTools())
.build();
```
### Builder Configuration Options
```java
AiServices.builder(AssistantInterface.class)
// Static tool registration
.tools(new Calculator(), new WeatherService())
// Dynamic tool provider
.toolProvider(new DynamicToolProvider())
// Concurrent execution
.executeToolsConcurrently()
// Error handling
.toolExecutionErrorHandler((request, exception) -> {
return "Error: " + exception.getMessage();
})
// Memory for context
.chatMemoryProvider(userId -> MessageWindowChatMemory.withMaxMessages(20))
.build();
```
## Core Patterns
### Basic Tool Definition
Use `@Tool` annotation to define methods as executable tools:
```java
public class BasicTools {
@Tool("Add two numbers")
public int add(@P("first number") int a, @P("second number") int b) {
return a + b;
}
@Tool("Get greeting")
public String greet(@P("name to greet") String name) {
return "Hello, " + name + "!";
}
}
```
### Parameter Descriptions and Validation
Provide clear parameter descriptions using `@P` annotation:
```java
public class WeatherService {
@Tool("Get current weather conditions")
public String getCurrentWeather(
@P("City name or coordinates") String location,
@P("Temperature unit (celsius, fahrenheit)", required = false) String unit) {
// Implementation with validation
if (location == null || location.trim().isEmpty()) {
return "Location is required";
}
return weatherClient.getCurrentWeather(location, unit);
}
}
```
### Complex Parameter Types
Use Java records and descriptions for complex objects:
```java
public class OrderService {
@Description("Customer order information")
public record OrderRequest(
@Description("Customer ID") String customerId,
@Description("List of items") List<OrderItem> items,
@JsonProperty(required = false) @Description("Delivery instructions") String instructions
) {}
@Tool("Create customer order")
public String createOrder(OrderRequest order) {
return orderService.processOrder(order);
}
}
```
## Advanced Features
### Memory Context Integration
Access user context using `@ToolMemoryId`:
```java
public class PersonalizedTools {
@Tool("Get user preferences")
public String getPreferences(
@ToolMemoryId String userId,
@P("Preference category") String category) {
return preferenceService.getPreferences(userId, category);
}
}
```
### Dynamic Tool Provisioning
Create tools that change based on context:
```java
public class ContextAwareToolProvider implements ToolProvider {
@Override
public ToolProviderResult provideTools(ToolProviderRequest request) {
String message = request.userMessage().singleText().toLowerCase();
var builder = ToolProviderResult.builder();
if (message.contains("weather")) {
builder.add(weatherToolSpec, weatherExecutor);
}
if (message.contains("calculate")) {
builder.add(calcToolSpec, calcExecutor);
}
return builder.build();
}
}
```
### Immediate Return Tools
Return results immediately without full AI response:
```java
public class QuickTools {
@Tool(value = "Get current time", returnBehavior = ReturnBehavior.IMMEDIATE)
public String getCurrentTime() {
return LocalDateTime.now().format(DateTimeFormatter.ISO_LOCAL_DATE_TIME);
}
}
```
## Error Handling
### Tool Error Handling
Handle tool execution errors gracefully:
```java
AiServices.builder(Assistant.class)
.chatModel(chatModel)
.tools(new ExternalServiceTools())
.toolExecutionErrorHandler((request, exception) -> {
if (exception instanceof ApiException) {
return "Service temporarily unavailable: " + exception.getMessage();
}
return "An error occurred while processing your request";
})
.build();
```
### Resilience Patterns
Implement circuit breakers and retries:
```java
public class ResilientService {
private final CircuitBreaker circuitBreaker = CircuitBreaker.ofDefaults("external-api");
@Tool("Get external data")
public String getExternalData(@P("Data identifier") String id) {
return circuitBreaker.executeSupplier(() -> {
return externalApi.getData(id);
});
}
}
```
## Integration Examples
### Multi-Domain Tool Service
```java
@Service
public class MultiDomainToolService {
public String processRequest(String userId, String request, String domain) {
String contextualRequest = String.format("[Domain: %s] %s", domain, request);
Result<String> result = assistant.chat(userId, contextualRequest);
// Log tool usage
result.toolExecutions().forEach(execution ->
analyticsService.recordToolUsage(userId, domain, execution.request().name()));
return result.content();
}
}
```
### Streaming with Tool Execution
```java
interface StreamingAssistant {
TokenStream chat(String message);
}
StreamingAssistant assistant = AiServices.builder(StreamingAssistant.class)
.streamingChatModel(streamingChatModel)
.tools(new Tools())
.build();
TokenStream stream = assistant.chat("What's the weather and calculate 15*8?");
stream
.onToolExecuted(execution ->
System.out.println("Executed: " + execution.request().name()))
.onPartialResponse(System.out::print)
.onComplete(response -> System.out.println("Complete!"))
.start();
```
## Best Practices
### Tool Design Guidelines
1. **Descriptive Names**: Use clear, actionable tool names
2. **Parameter Validation**: Validate inputs before processing
3. **Error Messages**: Provide meaningful error messages
4. **Return Types**: Use appropriate return types that LLMs can understand
5. **Performance**: Avoid blocking operations in tools
### Security Considerations
1. **Permission Checks**: Validate user permissions before tool execution
2. **Input Sanitization**: Sanitize all tool inputs
3. **Audit Logging**: Log tool usage for security monitoring
4. **Rate Limiting**: Implement rate limiting for external APIs
### Performance Optimization
1. **Concurrent Execution**: Use `executeToolsConcurrently()` for independent tools
2. **Caching**: Cache frequently accessed data
3. **Monitoring**: Monitor tool performance and error rates
4. **Resource Management**: Handle external service timeouts gracefully
## Reference Documentation
For detailed API reference, examples, and advanced patterns, see:
- [API Reference](./references/references.md) - Complete API documentation
- [Implementation Patterns](./references/implementation-patterns.md) - Advanced implementation examples
- [Examples](./references/examples.md) - Practical usage examples
## Common Issues and Solutions
### Tool Not Found
**Problem**: LLM calls tools that don't exist
**Solution**: Implement hallucination handler:
```java
.hallucinatedToolNameStrategy(request -> {
return ToolExecutionResultMessage.from(request,
"Error: Tool '" + request.name() + "' does not exist");
})
```
### Parameter Validation Errors
**Problem**: Tools receive invalid parameters
**Solution**: Add input validation and error handlers:
```java
.toolArgumentsErrorHandler((error, context) -> {
return ToolErrorHandlerResult.text("Invalid arguments: " + error.getMessage());
})
```
### Performance Issues
**Problem**: Tools are slow or timeout
**Solution**: Use concurrent execution and resilience patterns:
```java
.executeToolsConcurrently(Executors.newFixedThreadPool(5))
.toolExecutionTimeout(Duration.ofSeconds(30))
```
## Related Skills
- `langchain4j-ai-services-patterns`
- `langchain4j-rag-implementation-patterns`
- `langchain4j-spring-boot-integration`
## References
- [LangChain4j Tool & Function Calling - API References](./references/references.md)
- [LangChain4j Tool & Function Calling - Implementation Patterns](./references/implementation-patterns.md)
- [LangChain4j Tool & Function Calling - Examples](./references/examples.md)