# LangChain4j RAG Implementation - API References Complete API reference for implementing RAG systems with LangChain4j. ## Document Loading ### Document Loaders **FileSystemDocumentLoader**: Load from filesystem. ```java import dev.langchain4j.data.document.loader.FileSystemDocumentLoader; import java.nio.file.Path; List documents = FileSystemDocumentLoader.load("documents"); List single = FileSystemDocumentLoader.load("document.pdf"); ``` **ClassPathDocumentLoader**: Load from classpath resources. ```java List resources = ClassPathDocumentLoader.load("documents"); ``` **UrlDocumentLoader**: Load from web URLs. ```java Document webDoc = UrlDocumentLoader.load("https://example.com/doc.html"); ``` ## Document Splitting ### DocumentSplitter Interface ```java interface DocumentSplitter { List split(Document document); List splitAll(Collection documents); } ``` ### DocumentSplitters Factory **Recursive Split**: Smart recursive splitting by paragraphs, sentences, words. ```java DocumentSplitter splitter = DocumentSplitters.recursive( 500, // Max segment size (tokens or characters) 50 // Overlap size ); // With token counting DocumentSplitter splitter = DocumentSplitters.recursive( 500, 50, new OpenAiTokenCountEstimator("gpt-4o-mini") ); ``` **Paragraph Split**: Split by paragraphs. ```java DocumentSplitter splitter = DocumentSplitters.byParagraph(500, 50); ``` **Sentence Split**: Split by sentences. ```java DocumentSplitter splitter = DocumentSplitters.bySentence(500, 50); ``` **Line Split**: Split by lines. ```java DocumentSplitter splitter = DocumentSplitters.byLine(500, 50); ``` ## Embedding Models ### EmbeddingModel Interface ```java public interface EmbeddingModel { // Embed single text Response embed(String text); Response embed(TextSegment textSegment); // Batch embedding Response> embedAll(List textSegments); // Model dimension int dimension(); } ``` ### OpenAI Embedding Model ```java EmbeddingModel model = OpenAiEmbeddingModel.builder() .apiKey(System.getenv("OPENAI_API_KEY")) .modelName("text-embedding-3-small") // or text-embedding-3-large .dimensions(512) // Optional: reduce dimensions .timeout(Duration.ofSeconds(30)) .logRequests(true) .logResponses(true) .build(); ``` ### Other Embedding Models ```java // Google Vertex AI EmbeddingModel google = VertexAiEmbeddingModel.builder() .project("PROJECT_ID") .location("us-central1") .modelName("textembedding-gecko") .build(); // Ollama (local) EmbeddingModel ollama = OllamaEmbeddingModel.builder() .baseUrl("http://localhost:11434") .modelName("all-minilm") .build(); // AllMiniLmL6V2 (offline) EmbeddingModel offline = new AllMiniLmL6V2EmbeddingModel(); ``` ## Vector Stores (EmbeddingStore) ### EmbeddingStore Interface ```java public interface EmbeddingStore { // Add embeddings String add(Embedding embedding); String add(String id, Embedding embedding); String add(Embedding embedding, Embedded embedded); List addAll(List embeddings); List addAll(List embeddings, List embeddeds); List addAll(List ids, List embeddings, List embeddeds); // Search embeddings EmbeddingSearchResult search(EmbeddingSearchRequest request); // Remove embeddings void remove(String id); void removeAll(Collection ids); void removeAll(Filter filter); void removeAll(); } ``` ### In-Memory Store ```java EmbeddingStore store = new InMemoryEmbeddingStore<>(); // Merge stores InMemoryEmbeddingStore merged = InMemoryEmbeddingStore.merge( store1, store2, store3 ); ``` ### Pinecone ```java EmbeddingStore store = PineconeEmbeddingStore.builder() .apiKey(System.getenv("PINECONE_API_KEY")) .index("my-index") .namespace("production") .environment("gcp-starter") // or "aws-us-east-1" .build(); ``` ### Weaviate ```java EmbeddingStore store = WeaviateEmbeddingStore.builder() .host("localhost") .port(8080) .scheme("http") .collectionName("Documents") .build(); ``` ### Qdrant ```java EmbeddingStore store = QdrantEmbeddingStore.builder() .host("localhost") .port(6333) .collectionName("documents") .build(); ``` ### Chroma ```java EmbeddingStore store = ChromaEmbeddingStore.builder() .baseUrl("http://localhost:8000") .collectionName("my-collection") .build(); ``` ### Neo4j ```java EmbeddingStore store = Neo4jEmbeddingStore.builder() .withBasicAuth("bolt://localhost:7687", "neo4j", "password") .dimension(1536) .label("Document") .build(); ``` ### MongoDB Atlas ```java EmbeddingStore store = MongoDbEmbeddingStore.builder() .databaseName("search") .collectionName("documents") .indexName("vector_index") .createIndex(true) .fromClient(mongoClient) .build(); ``` ### PostgreSQL (pgvector) ```java EmbeddingStore store = PgVectorEmbeddingStore.builder() .host("localhost") .port(5432) .database("embeddings") .user("postgres") .password("password") .table("embeddings") .createTableIfNotExists(true) .build(); ``` ### Milvus ```java EmbeddingStore store = MilvusEmbeddingStore.builder() .host("localhost") .port(19530) .collectionName("documents") .dimension(1536) .build(); ``` ## Document Ingestion ### EmbeddingStoreIngestor ```java public class EmbeddingStoreIngestor { public static Builder builder(); public IngestionResult ingest(Document document); public IngestionResult ingest(Document... documents); public IngestionResult ingest(Collection documents); } ``` ### Building an Ingestor ```java EmbeddingStoreIngestor ingestor = EmbeddingStoreIngestor.builder() // Document transformation .documentTransformer(doc -> { doc.metadata().put("source", "manual"); return doc; }) // Document splitting strategy .documentSplitter(DocumentSplitters.recursive(500, 50)) // Text segment transformation .textSegmentTransformer(segment -> { String enhanced = "Category: Spring\n" + segment.text(); return TextSegment.from(enhanced, segment.metadata()); }) // Embedding model (required) .embeddingModel(embeddingModel) // Embedding store (required) .embeddingStore(embeddingStore) .build(); ``` ### IngestionResult ```java IngestionResult result = ingestor.ingest(documents); // Access results TokenUsage usage = result.tokenUsage(); long totalTokens = usage.totalTokenCount(); long inputTokens = usage.inputTokenCount(); ``` ## Content Retrieval ### EmbeddingSearchRequest ```java EmbeddingSearchRequest request = EmbeddingSearchRequest.builder() .queryEmbedding(embedding) // Required .maxResults(5) // Default: 3 .minScore(0.7) // Threshold 0-1 .filter(new IsEqualTo("category", "tutorial")) .build(); ``` ### EmbeddingSearchResult ```java EmbeddingSearchResult result = store.search(request); List> matches = result.matches(); for (EmbeddingMatch match : matches) { double score = match.score(); // Relevance 0-1 TextSegment segment = match.embedded(); // Retrieved content String id = match.embeddingId(); // Store ID } ``` ### ContentRetriever Interface ```java public interface ContentRetriever { Content retrieve(Query query); List retrieveAll(List queries); } ``` ### EmbeddingStoreContentRetriever ```java ContentRetriever retriever = EmbeddingStoreContentRetriever.builder() .embeddingStore(embeddingStore) .embeddingModel(embeddingModel) // Static configuration .maxResults(5) .minScore(0.7) // Dynamic configuration per query .dynamicMaxResults(query -> 10) .dynamicMinScore(query -> 0.8) .dynamicFilter(query -> new IsEqualTo("userId", extractUserId(query)) ) .build(); ``` ## Advanced RAG ### RetrievalAugmentor ```java public interface RetrievalAugmentor { AugmentationResult augment(UserMessage message); AugmentationResult augmentAll(List messages); } ``` ### DefaultRetrievalAugmentor ```java RetrievalAugmentor augmentor = DefaultRetrievalAugmentor.builder() // Query transformation .queryTransformer(new CompressingQueryTransformer(chatModel)) // Content retrieval .contentRetriever(contentRetriever) // Content aggregation and re-ranking .contentAggregator(ReRankingContentAggregator.builder() .scoringModel(scoringModel) .minScore(0.8) .build()) // Parallelization .executor(customExecutor) .build(); ``` ### Use with AI Services ```java Assistant assistant = AiServices.builder(Assistant.class) .chatModel(chatModel) .retrievalAugmentor(augmentor) .build(); ``` ## Metadata and Filtering ### Metadata Object ```java // Create from map Metadata meta = Metadata.from(Map.of( "userId", "user123", "category", "tutorial", "score", 0.95 )); // Add entries meta.put("status", "active"); meta.put("version", 2); // Retrieve entries String userId = meta.getString("userId"); int version = meta.getInt("version"); double score = meta.getDouble("score"); // Check existence boolean has = meta.containsKey("userId"); // Remove entry meta.remove("userId"); // Merge Metadata other = Metadata.from(Map.of("source", "db")); meta.merge(other); ``` ### Filter Operations ```java import dev.langchain4j.store.embedding.filter.comparison.*; import dev.langchain4j.store.embedding.filter.logical.*; // Equality Filter filter = new IsEqualTo("status", "active"); Filter filter = new IsNotEqualTo("deprecated", "true"); // Comparison Filter filter = new IsGreaterThan("score", 0.8); Filter filter = new IsLessThanOrEqualTo("daysOld", 30); Filter filter = new IsGreaterThanOrEqualTo("priority", 5); Filter filter = new IsLessThan("errorRate", 0.01); // Membership Filter filter = new IsIn("category", Arrays.asList("tech", "guide")); Filter filter = new IsNotIn("status", Arrays.asList("archived")); // String operations Filter filter = new ContainsString("content", "Spring"); // Logical operations Filter filter = new And( new IsEqualTo("userId", "123"), new IsGreaterThan("score", 0.7) ); Filter filter = new Or( new IsEqualTo("type", "doc"), new IsEqualTo("type", "guide") ); Filter filter = new Not(new IsEqualTo("archived", "true")); ``` ## TextSegment ### Creating TextSegments ```java // Text only TextSegment segment = TextSegment.from("This is the content"); // With metadata Metadata metadata = Metadata.from(Map.of("source", "docs")); TextSegment segment = TextSegment.from("Content", metadata); // Accessing String text = segment.text(); Metadata meta = segment.metadata(); ``` ## Best Practices 1. **Chunk Size**: Use 300-500 tokens per chunk for optimal balance 2. **Overlap**: Use 10-50 token overlap for semantic continuity 3. **Metadata**: Include source and timestamp for traceability 4. **Batch Processing**: Ingest documents in batches when possible 5. **Similarity Threshold**: Adjust minScore (0.7-0.85) based on precision/recall needs 6. **Vector DB Selection**: In-memory for dev/test, Pinecone/Qdrant for production 7. **Filtering**: Pre-filter by metadata to reduce search space 8. **Re-ranking**: Use scoring models for better relevance in production 9. **Monitoring**: Track retrieval quality metrics 10. **Testing**: Use small in-memory stores for unit tests ## Performance Tips - Use recursive splitting for semantic coherence - Enable batch processing for large datasets - Use dynamic max results based on query complexity - Cache embedding model for frequently accessed content - Implement async ingestion for large document collections - Monitor token usage for cost optimization - Use appropriate vector DB indexes for scale