Files
gh-francyjglisboa-agent-ski…/docs/AGENTDB_VISUAL_GUIDE.md
2025-11-29 18:27:25 +08:00

16 KiB

AgentDB Learning: Visual Guide

Purpose: Visual diagrams and flow charts showing exactly how AgentDB learns and improves skill creation.


🔄 The Complete Learning Loop (Visual)

Macro Level: Creation → Learning → Improvement

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   User Request   │───▶│  Agent Creator   │───▶│   Skill Created  │
│                 │    │                  │    │                 │
│ "Create agent    │    │ Uses:            │    │ Functional code │
│  for stocks"     │    │ • /references   │    │ • Documentation │
└─────────────────┘    │ • AgentDB data  │    │ • Tests         │
                       └──────────────────┘    └─────────────────┘
                                │                        │
                                ▼                        ▼
                       ┌──────────────────┐    ┌─────────────────┐
                       │  Store in AgentDB│───▶│   Deploy Skill   │
                       │                  │    │                 │
                       │ • Episodes       │    • User starts     │
                       │ • Causal edges   │    • using skill     │
                       │ • Success data   │    • Provides feedback│
                       └──────────────────┘    └─────────────────┘
                                │                        │
                                ▼                        ▼
┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│  Future User    │◀───│  AgentDB Query   │◀───│  Learning Data  │
│   Request       │    │                  │    │   Accumulated   │
│                 │    • Similar past    │    │                 │
│ "Create agent    │    • Success rates   │    • Better patterns│
│  for crypto"     │    • Proven templates │    • Higher success │
└─────────────────┘    └──────────────────┘    └─────────────────┘

📊 Data Storage Structure (Visual)

What Gets Stored Where in AgentDB

AgentDB Database
├── 📚 Episodes (Reflexion Store)
│   ├── Episode #1
│   │   ├── session_id: "creation-20251024-103406"
│   │   ├── task: "agent_creation_decision"
│   │   ├── input: "Create financial analysis agent..."
│   │   ├── reward: 85.0
│   │   ├── success: true
│   │   └── template_used: "financial-analysis-template"
│   │
│   ├── Episode #2
│   │   ├── session_id: "creation-20251024-103456"
│   │   ├── task: "agent_creation_decision"
│   │   ├── input: "Build climate analysis tool..."
│   │   ├── reward: 0.0
│   │   ├── success: false
│   │   └── template_used: "climate-analysis-template"
│   │
│   └── ... (one episode per creation)
│
├── 🔗 Causal Edges
│   ├── Edge #1
│   │   ├── cause: "finance_domain_request"
│   │   ├── effect: "financial_template_selected"
│   │   ├── uplift: 0.25
│   │   ├── confidence: 0.85
│   │   └── sample_size: 12
│   │
│   ├── Edge #2
│   │   ├── cause: "climate_domain_request"
│   │   ├── effect: "climate_template_selected"
│   │   ├── uplift: 0.30
│   │   ├── confidence: 0.90
│   │   └── sample_size: 8
│   │
│   └── ... (learned cause→effect relationships)
│
└── 🛠️ Skills Database
    ├── Skill #1
    │   ├── name: "financial-pattern-skill"
    │   ├── description: "Common patterns for finance agents"
    │   ├── success_rate: 0.82
    │   ├── uses: 15
    │   └── learned_features: ["RSI", "MACD", "volume"]
    │
    └── ... (extracted patterns from successful episodes)

🔍 Query Process (Step-by-Step Visual)

When User Requests: "Create financial analysis agent"

Step 1: Input Analysis
┌─────────────────────────────────────┐
│ User Input: "Create financial       │
│ analysis agent for stocks"          │
│                                     │
│ → Extract domain: "finance"         │
│ → Extract features: "analysis",     │
│   "stocks"                           │
│ → Generate search queries           │
└─────────────────────────────────────┘
                │
                ▼
Step 2: AgentDB Queries
┌─────────────────────────────────────┐
│ Query 1: Episodes                    │
│ agentdb reflexion retrieve           │
│   "financial analysis" 5 0.6         │
│                                     │
│ Query 2: Causal Effects             │
│ agentdb causal query                 │
│   "use_finance_template" "" 0.7     │
│                                     │
│ Query 3: Skills Search              │
│ agentdb skill search                 │
│   "financial analysis" 5            │
└─────────────────────────────────────┘
                │
                ▼
Step 3: Data Analysis
┌─────────────────────────────────────┐
│ Episodes Retrieved:                  │
│ ┌─ Episode A: Success=True          │
│ │  Template: financial-template     │
│ │  Reward: 85.0                    │
│ └─ Episode B: Success=False          │
│    Template: generic-template        │
│    Reward: 0.0                     │
│                                     │
│ Success Rate: 50% (1/2)             │
│                                     │
│ Causal Effects Found:               │
│ ┌─ financial-template: uplift=0.25   │
│ └─ generic-template: uplift=0.10     │
└─────────────────────────────────────┘
                │
                ▼
Step 4: Decision Making
┌─────────────────────────────────────┐
│ Decision Factors:                    │
│ ✓ 25% uplift for financial-template   │
│ ✓ 50% historical success rate       │
│ ✓ Domain match: "finance"           │
│                                     │
│ Enhanced Decision:                  │
│ → Template: financial-template       │
│ → Confidence: 0.50                  │
│ → Proof: "Causal uplift: 25%"       │
│ → Features: ["RSI", "MACD"]         │
└─────────────────────────────────────┘

📈 Learning Progression (Visual Timeline)

How the System Gets Smarter Over Time

Month 1: Initial Learning
┌─────────────────────────────────────┐
│ Creations: 5                        │
│ Episodes: 5                          │
│ Success Rate: Unknown                │
│ Templates: Static from /references   │
│ Learning: Basic pattern recording    │
└─────────────────────────────────────┘

Month 3: Pattern Recognition
┌─────────────────────────────────────┐
│ Creations: 25                       │
│ Episodes: 25                         │
│ Success Rates: Emerging             │
│ Templates: Domain-specific patterns  │
│ Learning: Success rate calculation  │
└─────────────────────────────────────┘

Month 6: Intelligent Recommendations
┌─────────────────────────────────────┐
│ Creations: 100                      │
│ Episodes: 100                        │
│ Success Rates: Reliable (>10 samples)│
│ Templates: Optimized per domain      │
│ Learning: Causal relationship mapping│
└─────────────────────────────────────┘

Month 12: Expert System
┌─────────────────────────────────────┐
│ Creations: 500+                     │
│ Episodes: 500+                       │
│ Success Rates: Highly accurate       │
│ Templates: Self-optimizing           │
│ Learning: Predictive recommendations │
└─────────────────────────────────────┘

🎯 Real Example: From First to Tenth Creation

Creation #1: No Learning Data

User: "Create financial analysis agent"

Process:
┌─ Query episodes: 0 results
├─ Query causal: 0 results
├─ Query skills: 0 results
└─ Decision: Use /references guidelines

Result:
┌─ Template: financial-analysis (from /references)
├─ Confidence: 0.8 (base rate)
├─ Features: Standard set
└─ Storage: Episode + Causal edge recorded

Creation #10: Rich Learning Data

User: "Create financial analysis agent for crypto"

Process:
┌─ Query episodes: 8 similar results
│  ├─ Success: 6/8 = 75% success rate
│  └─ Common features: ["RSI", "volume", "volatility"]
│
├─ Query causal: 5 relevant edges
│  ├─ financial-template: uplift=0.25
│  ├─ crypto-specific: uplift=0.15
│  └─ volatility-analysis: uplift=0.10
│
└─ Query skills: 3 relevant skills
   ├─ crypto-analysis-skill: success_rate=0.82
   ├─ technical-indicators-skill: success_rate=0.78
   └─ market-data-skill: success_rate=0.85

Result:
┌─ Template: financial-analysis-enhanced
├─ Confidence: 0.75 (from historical data)
├─ Features: ["RSI", "MACD", "volatility", "crypto-specific"]
├─ Proof: "Causal uplift: 25% + crypto patterns: 15%"
└─ Storage: New episode + refined causal edges

🔧 Technical Flow Diagram

Code-Level Data Flow

enhance_agent_creation(user_input, domain)
        │
        ▼
┌─────────────────────────────────────────┐
│ Step 1: Query Historical Episodes       │
│ episodes = query_similar_episodes(input)│
│                                         │
│ SQL equivalent:                         │
│ SELECT * FROM episodes                  │
│ WHERE similarity(input, task) > 0.6     │
│ ORDER BY similarity DESC                │
│ LIMIT 3                                 │
└─────────────────────────────────────────┘
        │
        ▼
┌─────────────────────────────────────────┐
│ Step 2: Calculate Success Patterns       │
│ success_rate = successful/total         │
│                                         │
│ if success_rate > 0.7:                 │
│     prefer_this_pattern = True          │
└─────────────────────────────────────────┘
        │
        ▼
┌─────────────────────────────────────────┐
│ Step 3: Query Causal Relationships      │
│ effects = query_causal_effects(domain)  │
│                                         │
│ SQL equivalent:                         │
│ SELECT * FROM causal_edges              │
│ WHERE cause LIKE '%domain%'             │
│ AND uplift > 0.1                       │
│ ORDER BY uplift DESC                   │
└─────────────────────────────────────────┘
        │
        ▼
┌─────────────────────────────────────────┐
│ Step 4: Search Learned Skills          │
│ skills = search_relevant_skills(input)   │
│                                         │
│ SQL equivalent:                         │
│ SELECT * FROM skills                    │
│ WHERE similarity(description, query) > 0.7│
│ AND success_rate > 0.6                 │
└─────────────────────────────────────────┘
        │
        ▼
┌─────────────────────────────────────────┐
│ Step 5: Make Enhanced Decision         │
│ intelligence = AgentDBIntelligence(     │
│   template_choice=best_template,       │
│   success_probability=success_rate,    │
│   learned_improvements=extract_features(skills),│
│   mathematical_proof=causal_proof      │
│ )                                       │
└─────────────────────────────────────────┘
        │
        ▼
┌─────────────────────────────────────────┐
│ Step 6: Store for Future Learning       │
│ store_creation_decision(input, intelligence)│
│                                         │
│ SQL equivalent:                         │
│ INSERT INTO episodes VALUES (...)       │
│ INSERT INTO causal_edges VALUES (...)   │
└─────────────────────────────────────────┘

🎉 Key Takeaways (Visual Summary)

┌─────────────────────────────────────────┐
│           AgentDB Learning Magic         │
│                                         │
│  📚 Store Every Decision                │
│  🔍 Find Similar Past Decisions        │
│  📊 Calculate Success Patterns          │
│  🎯 Make Enhanced Recommendations       │
│  🔄 Continuously Improve                │
│                                         │
│  Result: System gets smarter with        │
│          every skill created!           │
└─────────────────────────────────────────┘

From "nebulous magic" to "understandable process" - AgentDB turns Agent Creator into a learning system that accumulates expertise with every interaction!