8.6 KiB
Article-to-Prototype Skill
Version: 1.0.0 Type: Claude Skill Architecture: Simple Skill
Autonomously extracts technical content from articles (PDF, web, markdown, notebooks) and generates functional prototypes/POCs in the appropriate programming language.
Overview
The Article-to-Prototype Skill bridges the gap between technical documentation and working code. It automates the time-consuming process of translating algorithms, architectures, and methodologies from written content into executable prototypes.
Key Features
- Multi-Format Extraction: PDF, web pages, Jupyter notebooks, markdown
- Intelligent Analysis: Detects algorithms, architectures, dependencies, and domain
- Language Selection: Automatically chooses optimal programming language
- Multi-Language Generation: Python, JavaScript/TypeScript, Rust, Go, Julia
- Production Quality: Complete projects with tests, dependencies, and documentation
- Source Attribution: Maintains links to original articles
Installation
Prerequisites
- Python 3.8 or higher
- Claude Code CLI
Install Dependencies
cd article-to-prototype-cskill
pip install -r requirements.txt
Required Python Packages
PyPDF2>=3.0.0
pdfplumber>=0.10.0
requests>=2.31.0
beautifulsoup4>=4.12.0
trafilatura>=1.6.0
nbformat>=5.9.0
mistune>=3.0.0
Usage
In Claude Code
The skill activates automatically when you use phrases like:
"Extract algorithm from paper.pdf and implement in Python"
"Create prototype from https://example.com/tutorial"
"Implement the code described in notebook.ipynb"
"Parse this article and build a working version"
Command Line
# Basic usage
python scripts/main.py path/to/article.pdf
# Specify output directory
python scripts/main.py article.pdf -o ./my-prototype
# Specify target language
python scripts/main.py article.pdf -l rust
# Verbose output
python scripts/main.py article.pdf -v
Examples
Example 1: PDF Algorithm Paper
Input:
python scripts/main.py papers/dijkstra.pdf
Output:
article-to-prototype-cskill/output/
├── src/
│ ├── main.py # Dijkstra implementation
│ └── graph.py # Graph data structure
├── tests/
│ └── test_main.py # Unit tests
├── requirements.txt
├── README.md
└── .gitignore
Example 2: Web Tutorial
Input:
python scripts/main.py https://realpython.com/python-REST-api -l python
Output:
output/
├── src/
│ ├── main.py # REST API server
│ └── routes.py # API endpoints
├── requirements.txt # flask, requests
├── README.md
└── .gitignore
Example 3: Jupyter Notebook
Input:
python scripts/main.py ml-tutorial.ipynb
Output:
output/
├── src/
│ ├── model.py # ML model
│ ├── preprocessing.py # Data preprocessing
│ └── training.py # Training loop
├── requirements.txt # numpy, pandas, sklearn
├── tests/
└── README.md
Supported Formats
PDF Documents
- Academic papers
- Technical reports
- Books and chapters
- Presentations
Web Content
- Blog posts
- Documentation sites
- Tutorials
- GitHub READMEs
Jupyter Notebooks
- Code and markdown cells
- Cell outputs
- Metadata and dependencies
Markdown Files
- Standard markdown
- YAML front matter
- Code fences
- GFM (GitHub Flavored Markdown)
Supported Languages
| Language | Use Cases | Generated Files |
|---|---|---|
| Python | ML, data science, scripting | main.py, requirements.txt, tests |
| JavaScript | Web apps, Node.js | index.js, package.json |
| TypeScript | Type-safe web apps | index.ts, tsconfig.json, package.json |
| Rust | Systems, performance | main.rs, Cargo.toml |
| Go | Microservices, CLIs | main.go, go.mod |
| Julia | Scientific computing | main.jl, Project.toml |
How It Works
Pipeline Overview
Input → Extraction → Analysis → Language Selection → Generation → Output
1. Extraction Phase
- Detects input format (PDF, URL, notebook, markdown)
- Applies specialized extractor
- Preserves structure, code blocks, and metadata
2. Analysis Phase
- Algorithm Detection: Identifies algorithms, pseudocode, and procedures
- Architecture Recognition: Finds design patterns and system architectures
- Domain Classification: Categorizes content (ML, web dev, systems, etc.)
- Dependency Extraction: Discovers required libraries and tools
3. Language Selection
Selection priority:
- Explicit user hint (
-l python) - Detected from code blocks
- Domain best practices (ML → Python, Web → TypeScript)
- Dependency analysis
- Default to Python
4. Generation Phase
Creates complete project:
- Main implementation with algorithms
- Dependency manifest
- Test suite structure
- Comprehensive README
- .gitignore
Configuration
Environment Variables
# Optional: Custom cache directory
export ARTICLE_PROTOTYPE_CACHE_DIR=~/.article-to-prototype
# Optional: Default output language
export ARTICLE_PROTOTYPE_DEFAULT_LANG=python
Custom Prompts
Edit assets/prompts/analysis_prompt.txt to customize analysis behavior.
Quality Standards
Every generated prototype includes:
- ✅ No Placeholders: Fully implemented functions
- ✅ Type Safety: Type hints, annotations, or strong typing
- ✅ Error Handling: Try/catch, Result types, error returns
- ✅ Logging: Structured logging throughout
- ✅ Documentation: Docstrings and README
- ✅ Tests: Basic test suite structure
- ✅ Source Attribution: Links to original article
Troubleshooting
PDF Extraction Issues
Problem: "No text extracted from PDF"
Solutions:
- PDF may be scanned (image-based) - try OCR preprocessing
- Try alternative URL if article is available online
- Check if PDF is corrupted
Web Extraction Issues
Problem: "Failed to fetch URL"
Solutions:
- Check internet connection
- Verify URL is accessible
- Some sites may block automated access
- Try downloading HTML and processing locally
Dependency Issues
Problem: "Import error for pdfplumber"
Solution:
pip install --upgrade -r requirements.txt
Performance
Typical Processing Times
| Operation | Duration |
|---|---|
| PDF extraction (20 pages) | 3-5 seconds |
| Web page extraction | 2-4 seconds |
| Content analysis | 5-10 seconds |
| Code generation (Python) | 10-15 seconds |
| Total (end-to-end) | 30-45 seconds |
Optimization Tips
- Use local files instead of URLs when possible
- Cache is enabled by default (24-hour TTL)
- Run with
-vflag to see detailed progress
Advanced Usage
Batch Processing
from scripts.main import ArticleToPrototype
orchestrator = ArticleToPrototype()
articles = [
"paper1.pdf",
"paper2.pdf",
"https://example.com/tutorial"
]
for article in articles:
result = orchestrator.process(
source=article,
output_dir=f"./output_{i}"
)
print(f"Generated: {result['output_dir']}")
Custom Analysis
from scripts.analyzers.content_analyzer import ContentAnalyzer
from scripts.extractors.pdf_extractor import PDFExtractor
# Extract
extractor = PDFExtractor()
content = extractor.extract("article.pdf")
# Custom analysis
analyzer = ContentAnalyzer()
analysis = analyzer.analyze(content)
# Access results
print(f"Domain: {analysis.domain}")
print(f"Algorithms: {len(analysis.algorithms)}")
for algo in analysis.algorithms:
print(f" - {algo.name}: {algo.description}")
Contributing
This skill is part of the Agent-Skill-Creator ecosystem. To contribute:
- Test the skill with various article types
- Report issues with specific examples
- Suggest new features or languages
- Submit extraction pattern improvements
License
MIT License - See LICENSE file for details
Acknowledgments
- Created by Agent-Skill-Creator v2.1
- Extraction libraries: PyPDF2, pdfplumber, trafilatura, BeautifulSoup
- Follows Agent-Skill-Creator quality standards
Version History
v1.0.0 (2025-10-23)
- Initial release
- Multi-format extraction (PDF, web, notebooks, markdown)
- Multi-language generation (Python, JS/TS, Rust, Go, Julia)
- Intelligent analysis and language selection
- Production-quality code generation
Generated by: Agent-Skill-Creator v2.1 Last Updated: 2025-10-23 Documentation: See SKILL.md for comprehensive details