# Context-Aware Activation System v1.0 **Version:** 1.0 **Purpose:** Advanced context filtering for precise skill activation and false positive reduction **Target:** Reduce false positives from 2% to <1% while maintaining 99.5%+ reliability --- ## ๐ŸŽฏ **Overview** Context-Aware Activation enhances the 3-Layer Activation System by analyzing the semantic and contextual environment of user queries to ensure skills activate only in appropriate situations. ### **Problem Solved** **Before:** Skills activated based purely on keyword/pattern matching, leading to false positives in inappropriate contexts **After:** Skills evaluate contextual relevance before activation, dramatically reducing inappropriate activations --- ## ๐Ÿง  **Context Analysis Framework** ### **Multi-Dimensional Context Analysis** The system evaluates query context across multiple dimensions: #### **1. Domain Context** ```json { "domain_context": { "current_domain": "finance", "confidence": 0.92, "related_domains": ["trading", "investment", "market"], "excluded_domains": ["healthcare", "education", "entertainment"] } } ``` #### **2. Task Context** ```json { "task_context": { "current_task": "analysis", "task_stage": "exploration", "task_complexity": "medium", "required_capabilities": ["data_processing", "calculation"] } } ``` #### **3. User Intent Context** ```json { "intent_context": { "primary_intent": "analyze", "secondary_intents": ["compare", "evaluate"], "intent_strength": 0.87, "urgency_level": "medium" } } ``` #### **4. Conversational Context** ```json { "conversational_context": { "conversation_stage": "problem_identification", "previous_queries": ["stock market trends", "investment analysis"], "context_coherence": 0.94, "topic_consistency": 0.89 } } ``` --- ## ๐Ÿ” **Context Detection Algorithms** ### **Semantic Context Extraction** ```python def extract_semantic_context(query, conversation_history=None): """Extract semantic context from query and conversation""" context = { 'entities': extract_named_entities(query), 'concepts': extract_key_concepts(query), 'relationships': extract_entity_relationships(query), 'sentiment': analyze_sentiment(query), 'urgency': detect_urgency(query) } # Analyze conversation history if available if conversation_history: context['conversation_coherence'] = analyze_coherence( query, conversation_history ) context['topic_evolution'] = track_topic_evolution( conversation_history ) return context def extract_named_entities(query): """Extract named entities from query""" entities = { 'organizations': [], 'locations': [], 'persons': [], 'products': [], 'technical_terms': [] } # Use NLP library or pattern matching # Implementation depends on available tools return entities def extract_key_concepts(query): """Extract key concepts and topics""" concepts = { 'primary_domain': identify_primary_domain(query), 'secondary_domains': identify_secondary_domains(query), 'technical_concepts': extract_technical_terms(query), 'business_concepts': extract_business_terms(query) } return concepts ``` ### **Context Relevance Scoring** ```python def calculate_context_relevance(query, skill_config, extracted_context): """Calculate how relevant the query context is to the skill""" relevance_scores = {} # Domain relevance relevance_scores['domain'] = calculate_domain_relevance( skill_config['expected_domains'], extracted_context['concepts']['primary_domain'] ) # Task relevance relevance_scores['task'] = calculate_task_relevance( skill_config['supported_tasks'], extracted_context['intent_context']['primary_intent'] ) # Capability relevance relevance_scores['capability'] = calculate_capability_relevance( skill_config['capabilities'], extracted_context['required_capabilities'] ) # Context coherence relevance_scores['coherence'] = extracted_context.get( 'conversation_coherence', 0.5 ) # Calculate weighted overall relevance weights = { 'domain': 0.3, 'task': 0.25, 'capability': 0.25, 'coherence': 0.2 } overall_relevance = sum( score * weights[category] for category, score in relevance_scores.items() ) return { 'overall_relevance': overall_relevance, 'category_scores': relevance_scores, 'recommendation': evaluate_relevance_threshold(overall_relevance) } def evaluate_relevance_threshold(relevance_score): """Determine activation recommendation based on relevance""" if relevance_score >= 0.9: return {'activate': True, 'confidence': 'high', 'reason': 'Strong context match'} elif relevance_score >= 0.7: return {'activate': True, 'confidence': 'medium', 'reason': 'Good context match'} elif relevance_score >= 0.5: return {'activate': False, 'confidence': 'low', 'reason': 'Weak context match'} else: return {'activate': False, 'confidence': 'very_low', 'reason': 'Poor context match'} ``` --- ## ๐Ÿšซ **Context Filtering System** ### **Negative Context Detection** ```python def detect_negative_context(query, skill_config): """Detect contexts where skill should NOT activate""" negative_indicators = { 'excluded_domains': [], 'conflicting_intents': [], 'inappropriate_contexts': [], 'resource_constraints': [] } # Check for excluded domains excluded_domains = skill_config.get('contextual_filters', {}).get('excluded_domains', []) query_domains = identify_query_domains(query) for domain in query_domains: if domain in excluded_domains: negative_indicators['excluded_domains'].append({ 'domain': domain, 'reason': f'Domain "{domain}" is explicitly excluded' }) # Check for conflicting intents conflicting_intents = identify_conflicting_intents(query, skill_config) negative_indicators['conflicting_intents'] = conflicting_intents # Check for inappropriate contexts inappropriate_contexts = check_context_appropriateness(query, skill_config) negative_indicators['inappropriate_contexts'] = inappropriate_contexts # Calculate negative score negative_score = calculate_negative_score(negative_indicators) return { 'should_block': negative_score > 0.7, 'negative_score': negative_score, 'indicators': negative_indicators, 'recommendation': generate_block_recommendation(negative_score) } def check_context_appropriateness(query, skill_config): """Check if query context is appropriate for skill activation""" inappropriate = [] # Check if user is asking for help with existing tools if any(phrase in query.lower() for phrase in [ 'how to use', 'help with', 'tutorial', 'guide', 'explain' ]): if 'tutorial' not in skill_config.get('capabilities', {}): inappropriate.append({ 'type': 'help_request', 'reason': 'User requesting help, not task execution' }) # Check if user is asking about theory or education if any(phrase in query.lower() for phrase in [ 'what is', 'explain', 'define', 'theory', 'concept', 'learn about' ]): if 'educational' not in skill_config.get('capabilities', {}): inappropriate.append({ 'type': 'educational_query', 'reason': 'User asking for education, not task execution' }) # Check if user is trying to debug or troubleshoot if any(phrase in query.lower() for phrase in [ 'debug', 'error', 'problem', 'issue', 'fix', 'troubleshoot' ]): if 'debugging' not in skill_config.get('capabilities', {}): inappropriate.append({ 'type': 'debugging_query', 'reason': 'User asking for debugging help' }) return inappropriate ``` ### **Context-Aware Decision Engine** ```python def make_context_aware_decision(query, skill_config, conversation_history=None): """Make final activation decision considering all context factors""" # Extract context context = extract_semantic_context(query, conversation_history) # Calculate relevance relevance = calculate_context_relevance(query, skill_config, context) # Check for negative indicators negative_context = detect_negative_context(query, skill_config) # Get confidence threshold from skill config confidence_threshold = skill_config.get( 'contextual_filters', {} ).get('confidence_threshold', 0.7) # Make decision should_activate = True decision_reasons = [] # Check negative context first (blocking condition) if negative_context['should_block']: should_activate = False decision_reasons.append(f"Blocked: {negative_context['recommendation']['reason']}") # Check relevance threshold elif relevance['overall_relevance'] < confidence_threshold: should_activate = False decision_reasons.append(f"Low relevance: {relevance['overall_relevance']:.2f} < {confidence_threshold}") # Check confidence level elif relevance['recommendation']['confidence'] == 'low': should_activate = False decision_reasons.append(f"Low confidence: {relevance['recommendation']['reason']}") # If passing all checks, recommend activation else: decision_reasons.append(f"Approved: {relevance['recommendation']['reason']}") return { 'should_activate': should_activate, 'confidence': relevance['recommendation']['confidence'], 'relevance_score': relevance['overall_relevance'], 'negative_score': negative_context['negative_score'], 'decision_reasons': decision_reasons, 'context_analysis': { 'relevance': relevance, 'negative_context': negative_context, 'extracted_context': context } } ``` --- ## ๐Ÿ“‹ **Enhanced Marketplace Configuration** ### **Context-Aware Configuration Structure** ```json { "name": "skill-name", "activation": { "keywords": [...], "patterns": [...], "_comment": "NEW: Context-aware filtering", "contextual_filters": { "required_context": { "domains": ["finance", "trading", "investment"], "tasks": ["analysis", "calculation", "comparison"], "entities": ["stock", "ticker", "market"], "confidence_threshold": 0.8 }, "excluded_context": { "domains": ["healthcare", "education", "entertainment"], "tasks": ["tutorial", "help", "debugging"], "query_types": ["question", "definition", "explanation"], "user_states": ["learning", "exploring"] }, "context_weights": { "domain_relevance": 0.35, "task_relevance": 0.30, "intent_strength": 0.20, "conversation_coherence": 0.15 }, "activation_rules": { "min_relevance_score": 0.75, "max_negative_score": 0.3, "required_coherence": 0.6, "context_consistency_check": true } } }, "capabilities": { "technical_analysis": true, "data_processing": true, "_comment": "NEW: Context capabilities", "context_requirements": { "min_confidence": 0.8, "required_domains": ["finance"], "supported_tasks": ["analysis", "calculation"] } } } ``` --- ## ๐Ÿงช **Context Testing Framework** ### **Context Test Generation** ```python def generate_context_test_cases(skill_config): """Generate test cases for context-aware activation""" test_cases = [] # Positive context tests (should activate) positive_contexts = [ { 'query': 'Analyze AAPL stock using RSI indicator', 'context': {'domain': 'finance', 'task': 'analysis', 'intent': 'analyze'}, 'expected': True, 'reason': 'Perfect domain and task match' }, { 'query': 'I need to compare MSFT vs GOOGL performance', 'context': {'domain': 'finance', 'task': 'comparison', 'intent': 'compare'}, 'expected': True, 'reason': 'Domain match with supported task' } ] # Negative context tests (should NOT activate) negative_contexts = [ { 'query': 'Explain what stock analysis is', 'context': {'domain': 'education', 'task': 'explanation', 'intent': 'learn'}, 'expected': False, 'reason': 'Educational context, not task execution' }, { 'query': 'How to use the stock analyzer tool', 'context': {'domain': 'help', 'task': 'tutorial', 'intent': 'learn'}, 'expected': False, 'reason': 'Tutorial request, not analysis task' }, { 'query': 'Debug my stock analysis code', 'context': {'domain': 'programming', 'task': 'debugging', 'intent': 'fix'}, 'expected': False, 'reason': 'Debugging context, not supported capability' } ] # Edge case tests edge_cases = [ { 'query': 'Stock market trends for healthcare companies', 'context': {'domain': 'finance', 'subdomain': 'healthcare', 'task': 'analysis'}, 'expected': True, 'reason': 'Finance domain with healthcare subdomain - should activate' }, { 'query': 'Teach me about technical analysis', 'context': {'domain': 'education', 'topic': 'technical_analysis'}, 'expected': False, 'reason': 'Educational context despite relevant topic' } ] test_cases.extend(positive_contexts) test_cases.extend(negative_contexts) test_cases.extend(edge_cases) return test_cases def run_context_aware_tests(skill_config, test_cases): """Run context-aware activation tests""" results = [] for i, test_case in enumerate(test_cases): query = test_case['query'] expected = test_case['expected'] reason = test_case['reason'] # Simulate context analysis decision = make_context_aware_decision(query, skill_config) result = { 'test_id': i + 1, 'query': query, 'expected': expected, 'actual': decision['should_activate'], 'correct': expected == decision['should_activate'], 'confidence': decision['confidence'], 'relevance_score': decision['relevance_score'], 'decision_reasons': decision['decision_reasons'], 'test_reason': reason } results.append(result) # Log result status = "โœ…" if result['correct'] else "โŒ" print(f"{status} Test {i+1}: {query}") if not result['correct']: print(f" Expected: {expected}, Got: {decision['should_activate']}") print(f" Reasons: {'; '.join(decision['decision_reasons'])}") # Calculate metrics total_tests = len(results) correct_tests = sum(1 for r in results if r['correct']) accuracy = correct_tests / total_tests if total_tests > 0 else 0 return { 'total_tests': total_tests, 'correct_tests': correct_tests, 'accuracy': accuracy, 'results': results } ``` --- ## ๐Ÿ“Š **Performance Monitoring** ### **Context-Aware Metrics** ```python class ContextAwareMonitor: """Monitor context-aware activation performance""" def __init__(self): self.metrics = { 'total_queries': 0, 'context_filtered': 0, 'false_positives_prevented': 0, 'context_analysis_time': [], 'relevance_scores': [], 'negative_contexts_detected': [] } def log_context_decision(self, query, decision, actual_outcome=None): """Log context-aware activation decision""" self.metrics['total_queries'] += 1 # Track context filtering if not decision['should_activate'] and decision['relevance_score'] > 0.5: self.metrics['context_filtered'] += 1 # Track prevented false positives (if we have feedback) if actual_outcome == 'false_positive_prevented': self.metrics['false_positives_prevented'] += 1 # Track relevance scores self.metrics['relevance_scores'].append(decision['relevance_score']) # Track negative contexts if decision['negative_score'] > 0.5: self.metrics['negative_contexts_detected'].append({ 'query': query, 'negative_score': decision['negative_score'], 'reasons': decision['decision_reasons'] }) def generate_performance_report(self): """Generate context-aware performance report""" total = self.metrics['total_queries'] if total == 0: return "No data available" context_filter_rate = self.metrics['context_filtered'] / total avg_relevance = sum(self.metrics['relevance_scores']) / len(self.metrics['relevance_scores']) report = f""" Context-Aware Performance Report ================================ Total Queries Analyzed: {total} Queries Filtered by Context: {self.metrics['context_filtered']} ({context_filter_rate:.1%}) False Positives Prevented: {self.metrics['false_positives_prevented']} Average Relevance Score: {avg_relevance:.3f} Top Negative Context Categories: """ # Analyze negative contexts negative_reasons = {} for context in self.metrics['negative_contexts_detected']: for reason in context['reasons']: negative_reasons[reason] = negative_reasons.get(reason, 0) + 1 for reason, count in sorted(negative_reasons.items(), key=lambda x: x[1], reverse=True)[:5]: report += f" - {reason}: {count}\n" return report ``` --- ## ๐Ÿ”„ **Integration with Existing System** ### **Enhanced 3-Layer Activation** ```python def enhanced_three_layer_activation(query, skill_config, conversation_history=None): """Enhanced 3-layer activation with context awareness""" # Layer 1: Keyword matching (existing) keyword_match = check_keyword_matching(query, skill_config['activation']['keywords']) # Layer 2: Pattern matching (existing) pattern_match = check_pattern_matching(query, skill_config['activation']['patterns']) # Layer 3: Description understanding (existing) description_match = check_description_relevance(query, skill_config) # NEW: Layer 4: Context-aware filtering context_decision = make_context_aware_decision(query, skill_config, conversation_history) # Make final decision base_match = keyword_match or pattern_match or description_match if not base_match: return { 'should_activate': False, 'reason': 'No base layer match', 'layers_matched': [], 'context_filtered': False } if not context_decision['should_activate']: return { 'should_activate': False, 'reason': f'Context filtered: {"; ".join(context_decision["decision_reasons"])}', 'layers_matched': get_matched_layers(keyword_match, pattern_match, description_match), 'context_filtered': True, 'context_score': context_decision['relevance_score'] } return { 'should_activate': True, 'reason': f'Approved: {context_decision["recommendation"]["reason"]}', 'layers_matched': get_matched_layers(keyword_match, pattern_match, description_match), 'context_filtered': False, 'context_score': context_decision['relevance_score'], 'confidence': context_decision['confidence'] } ``` --- ## โœ… **Implementation Checklist** ### **Configuration Requirements** - [ ] Add `contextual_filters` section to marketplace.json - [ ] Define `required_context` domains and tasks - [ ] Define `excluded_context` for false positive prevention - [ ] Set appropriate `confidence_threshold` - [ ] Configure `context_weights` for domain-specific needs ### **Testing Requirements** - [ ] Generate context test cases for each skill - [ ] Test positive context scenarios - [ ] Test negative context scenarios - [ ] Validate edge cases and boundary conditions - [ ] Monitor false positive reduction ### **Performance Requirements** - [ ] Context analysis time < 100ms - [ ] Relevance calculation accuracy > 90% - [ ] False positive reduction > 50% - [ ] No negative impact on true positive rate --- ## ๐Ÿ“ˆ **Expected Outcomes** ### **Performance Improvements** - **False Positive Rate**: 2% โ†’ **<1%** - **Context Precision**: 60% โ†’ **85%** - **User Satisfaction**: 85% โ†’ **95%** - **Activation Reliability**: 98% โ†’ **99.5%** ### **User Experience Benefits** - Skills activate only in appropriate contexts - Reduced confusion and frustration - More predictable and reliable behavior - Better understanding of skill capabilities --- **Version:** 1.0 **Last Updated:** 2025-10-24 **Maintained By:** Agent-Skill-Creator Team