# Claude LLM Protocols Guide: Complete Skill Creation System **Version:** 1.0 **Purpose:** Comprehensive guide for Claude LLM to follow during skill creation via Agent-Skill-Creator **Target:** Ensure consistent, high-quality skill creation following all defined protocols --- ## ๐ŸŽฏ **Overview** This guide defines the complete set of protocols that Claude LLM must follow when creating skills through the Agent-Skill-Creator system. The protocols ensure autonomy, quality, and consistency while integrating advanced capabilities like context-aware activation and multi-intent detection. ### **Protocol Hierarchy** ``` Autonomous Creation Protocol (Master Protocol) โ”œโ”€โ”€ Phase 1: Discovery Protocol โ”œโ”€โ”€ Phase 2: Design Protocol โ”œโ”€โ”€ Phase 3: Architecture Protocol โ”œโ”€โ”€ Phase 4: Detection Protocol (Enhanced with Fase 1) โ”œโ”€โ”€ Phase 5: Implementation Protocol โ”œโ”€โ”€ Phase 6: Testing Protocol โ””โ”€โ”€ AgentDB Learning Protocol ``` --- ## ๐Ÿค– **Autonomous Creation Protocol (Master Protocol)** ### **When to Apply** Always. This is the master protocol that governs all skill creation activities. ### **Core Principles** #### **๐Ÿ”“ Autonomy Rules** - โœ… **Claude DECIDES** which API to use (doesn't ask user) - โœ… **Claude DEFINES** which analyses to perform (based on value) - โœ… **Claude STRUCTURES** optimally (best practices) - โœ… **Claude IMPLEMENTS** complete code (no placeholders) - โœ… **Claude LEARNS** from experience (AgentDB integration) #### **โญ Quality Standards** - โœ… Production-ready code (no TODOs) - โœ… Useful documentation (not "see docs") - โœ… Real configs (no placeholders) - โœ… Robust error handling - โœ… Intelligence validated with mathematical proofs #### **๐Ÿ“ฆ Completeness Requirements** - โœ… Complete SKILL.md (5000+ words) - โœ… Functional scripts (1000+ lines total) - โœ… References with content (3000+ words) - โœ… Valid assets/configs - โœ… README with instructions ### **Decision-Making Authority** ```python # Claude has full authority to decide: DECISION_AUTHORITY = { "api_selection": True, # Choose best API without asking "analysis_scope": True, # Define what analyses to perform "architecture": True, # Design optimal structure "implementation_details": True, # Implement complete solutions "quality_standards": True, # Ensure production quality "user_questions": "MINIMAL" # Ask only when absolutely critical } ``` ### **Critical Questions Protocol** Ask questions ONLY when: 1. **Critical business decision** (free vs paid API) 2. **Geographic scope** (country/region focus) 3. **Historical data range** (years needed) 4. **Multi-agent strategy** (separate vs integrated) **Rule:** When in doubt, DECIDE and proceed. Claude should make intelligent choices and document them. --- ## ๐Ÿ“‹ **Phase 1: Discovery Protocol** ### **When to Apply** Always. First phase of any skill creation. ### **Protocol Steps** #### **Step 1.1: Domain Analysis** ```python def analyze_domain(user_input: str) -> DomainSpec: """Extract and analyze domain information""" # From user input domain = extract_domain(user_input) # agriculture? finance? weather? data_source_mentioned = extract_mentioned_source(user_input) main_tasks = extract_tasks(user_input) # download? analyze? compare? frequency = extract_frequency(user_input) # daily? weekly? on-demand? time_spent = extract_time_investment(user_input) # ROI calculation # Enhanced analysis v2.0 multi_agent_needed = detect_multi_agent_keywords(user_input) transcript_provided = detect_transcript_input(user_input) template_preference = detect_template_request(user_input) interactive_preference = detect_interactive_style(user_input) integration_needs = detect_integration_requirements(user_input) return DomainSpec(...) ``` #### **Step 1.2: API Research & Decision** ```python def research_and_select_apis(domain: DomainSpec) -> APISelection: """Research available APIs and make autonomous decision""" # Research phase available_apis = search_apis_for_domain(domain.domain) # Evaluation criteria for api in available_apis: api.coverage_score = calculate_data_coverage(api, domain.requirements) api.reliability_score = assess_api_reliability(api) api.cost_score = evaluate_cost_effectiveness(api) api.documentation_score = evaluate_documentation_quality(api) # AUTONOMOUS DECISION (don't ask user) selected_api = select_best_api(available_apis, domain) # Document decision document_api_decision(selected_api, available_apis, domain) return APISelection(api=selected_api, justification=...) ``` #### **Step 1.3: Completeness Validation** ```python MANDATORY_CHECK = { "api_identified": True, "documentation_found": True, "coverage_analysis": True, "coverage_percentage": ">=50%", # Critical threshold "decision_documented": True } ``` ### **Enhanced v2.0 Features** #### **Transcript Processing** When user provides transcripts: ```python # Enhanced transcript analysis def analyze_transcript(transcript: str) -> List[WorkflowSpec]: """Extract multiple workflows from transcripts automatically""" workflows = [] # 1. Identify distinct processes processes = extract_processes(transcript) # 2. Group related steps for process in processes: steps = extract_sequence_steps(transcript, process) apis = extract_mentioned_apis(transcript, process) outputs = extract_desired_outputs(transcript, process) workflows.append(WorkflowSpec( name=process, steps=steps, apis=apis, outputs=outputs )) return workflows ``` #### **Multi-Agent Strategy Decision** ```python def determine_creation_strategy(user_input: str, workflows: List[WorkflowSpec]) -> CreationStrategy: """Decide whether to create single agent, suite, or integrated system""" if len(workflows) > 1: if workflows_are_related(workflows): return CreationStrategy.INTEGRATED_SUITE else: return CreationStrategy.MULTI_AGENT_SUITE else: return CreationStrategy.SINGLE_AGENT ``` --- ## ๐ŸŽจ **Phase 2: Design Protocol** ### **When to Apply** After API selection is complete. ### **Protocol Steps** #### **Step 2.1: Use Case Analysis** ```python def define_use_cases(domain: DomainSpec, api: APISelection) -> UseCaseSpec: """Think about use cases and define analyses based on value""" # Core analyses (4-6 required) core_analyses = [ f"{domain.lower()}_trend_analysis", f"{domain.lower()}_comparative_analysis", f"{domain.lower()}_ranking_analysis", f"{domain.lower()}_performance_analysis" ] # Domain-specific analyses domain_analyses = generate_domain_specific_analyses(domain, api) # Mandatory comprehensive report comprehensive_report = f"comprehensive_{domain.lower()}_report" return UseCaseSpec( core_analyses=core_analyses, domain_analyses=domain_analyses, comprehensive_report=comprehensive_report ) ``` #### **Step 2.2: Analysis Methodology** ```python def define_methodologies(use_cases: UseCaseSpec) -> MethodologySpec: """Specify methodologies for each analysis""" methodologies = {} for analysis in use_cases.all_analyses: methodologies[analysis] = { "data_requirements": define_data_requirements(analysis), "statistical_methods": select_statistical_methods(analysis), "visualization_needs": determine_visualization_needs(analysis), "output_format": define_output_format(analysis) } return MethodologySpec(methodologies=methodologies) ``` #### **Step 2.3: Value Proposition** ```python def calculate_value_proposition(domain: DomainSpec, analyses: UseCaseSpec) -> ValueSpec: """Calculate ROI and value proposition""" current_manual_time = domain.time_spent_hours * 52 # Annual automated_time = 0.5 # Estimated automated time per task time_saved_annual = (current_manual_time - automated_time) * 52 roi_calculation = { "time_before": current_manual_time, "time_after": automated_time, "time_saved": time_saved_annual, "value_proposition": f"Save {time_saved_annual:.1f} hours annually" } return ValueSpec(roi=roi_calculation) ``` --- ## ๐Ÿ—๏ธ **Phase 3: Architecture Protocol** ### **When to Apply** After design specifications are complete. ### **Protocol Steps** #### **Step 3.1: Modular Architecture Design** ```python def design_architecture(use_cases: UseCaseSpec, api: APISelection) -> ArchitectureSpec: """Structure optimally following best practices""" # MANDATORY structure required_structure = { "main_scripts": [ f"{api.name.lower()}_client.py", f"{domain.lower()}_analyzer.py", f"{domain.lower()}_comparator.py", f"comprehensive_{domain.lower()}_report.py" ], "utils": { "helpers.py": "MANDATORY - temporal context and common utilities", "validators/": "MANDATORY - 4 validators minimum" }, "tests/": "MANDATORY - comprehensive test suite", "references/": "MANDATORY - documentation and guides" } return ArchitectureSpec(structure=required_structure) ``` #### **Step 3.2: Modular Parser Architecture (MANDATORY)** ```python # Rule: If API returns N data types โ†’ create N specific parsers def create_modular_parsers(api_data_types: List[str]) -> ParserSpec: """Create one parser per data type - MANDATORY""" parsers = {} for data_type in api_data_types: parser_name = f"parse_{data_type.lower()}" parsers[parser_name] = { "function_signature": f"def {parser_name}(data: dict) -> pd.DataFrame:", "validation_rules": generate_validation_rules(data_type), "error_handling": create_error_handling(data_type) } return ParserSpec(parsers=parsers) ``` #### **Step 3.3: Validation System (MANDATORY)** ```python def create_validation_system(domain: str, data_types: List[str]) -> ValidationSpec: """Create comprehensive validation system - MANDATORY""" # MANDATORY: 4 validators minimum validators = { f"validate_{domain.lower()}_data": create_domain_validator(), f"validate_{domain.lower()}_entity": create_entity_validator(), f"validate_{domain.lower()}_temporal": create_temporal_validator(), f"validate_{domain.lower()}_completeness": create_completeness_validator() } # Additional validators per data type for data_type in data_types: validators[f"validate_{data_type.lower()}"] = create_type_validator(data_type) return ValidationSpec(validators=validators) ``` #### **Step 3.4: Helper Functions (MANDATORY)** ```python # MANDATORY: utils/helpers.py with temporal context def create_helpers_module() -> HelperSpec: """Create helper functions module - MANDATORY""" helpers = { # Temporal context functions "get_current_year": "lambda: datetime.now().year", "get_seasonal_context": "determine_current_season()", "get_time_period_description": "generate_time_description()", # Common utilities "safe_float_conversion": "convert_to_float_safely()", "format_currency": "format_as_currency()", "calculate_growth_rate": "compute_growth_rate()", "handle_missing_data": "process_missing_values()" } return HelperSpec(functions=helpers) ``` --- ## ๐ŸŽฏ **Phase 4: Detection Protocol (Enhanced with Fase 1)** ### **When to Apply** After architecture is designed. ### **Enhanced 4-Layer Detection System** ```python def create_detection_system(domain: str, capabilities: List[str]) -> DetectionSpec: """Create 4-layer detection with Fase 1 enhancements""" # Layer 1: Keywords (Expanded 50-80 keywords) keyword_spec = { "total_target": "50-80 keywords", "categories": { "core_capabilities": "10-15 keywords", "synonym_variations": "10-15 keywords", "direct_variations": "8-12 keywords", "domain_specific": "5-8 keywords", "natural_language": "5-10 keywords" } } # Layer 2: Patterns (10-15 patterns) pattern_spec = { "total_target": "10-15 patterns", "enhanced_patterns": [ "data_extraction_patterns", "processing_patterns", "workflow_automation_patterns", "technical_operations_patterns", "natural_language_patterns" ] } # Layer 3: Description + NLU description_spec = { "minimum_length": "300-500 characters", "keyword_density": "include 60+ unique keywords", "semantic_richness": "comprehensive concept coverage" } # Layer 4: Context-Aware Filtering (Fase 1 enhancement) context_spec = { "required_context": { "domains": [domain, get_related_domains(domain)], "tasks": capabilities, "confidence_threshold": 0.8 }, "excluded_context": { "domains": get_excluded_domains(domain), "tasks": ["tutorial", "help", "debugging"], "query_types": ["question", "definition"] }, "context_weights": { "domain_relevance": 0.35, "task_relevance": 0.30, "intent_strength": 0.20, "conversation_coherence": 0.15 } } # Multi-Intent Detection (Fase 1 enhancement) intent_spec = { "primary_intents": get_primary_intents(domain), "secondary_intents": get_secondary_intents(capabilities), "contextual_intents": get_contextual_intents(), "intent_combinations": generate_supported_combinations() } return DetectionSpec( keywords=keyword_spec, patterns=pattern_spec, description=description_spec, context=context_spec, intents=intent_spec ) ``` ### **Keywords Generation Protocol** ```python def generate_expanded_keywords(domain: str, capabilities: List[str]) -> KeywordSpec: """Generate 50-80 expanded keywords using Fase 1 system""" # Use synonym expansion system base_keywords = generate_base_keywords(domain, capabilities) expanded_keywords = expand_with_synonyms(base_keywords, domain) # Category organization categorized_keywords = { "core_capabilities": extract_core_capabilities(expanded_keywords), "synonym_variations": extract_synonyms(expanded_keywords), "direct_variations": generate_direct_variations(base_keywords), "domain_specific": generate_domain_specific(domain), "natural_language": generate_natural_variations(base_keywords) } return KeywordSpec( total=len(expanded_keywords), categories=categorized_keywords, minimum_target=50 # Target: 50-80 keywords ) ``` ### **Pattern Generation Protocol** ```python def generate_enhanced_patterns(domain: str, keywords: KeywordSpec) -> PatternSpec: """Generate 10-15 enhanced patterns using Fase 1 system""" # Use activation patterns guide base_patterns = generate_base_patterns(domain) enhanced_patterns = enhance_patterns_with_synonyms(base_patterns) # Pattern categories pattern_categories = { "data_extraction": create_data_extraction_patterns(domain), "processing_workflow": create_processing_patterns(domain), "technical_operations": create_technical_patterns(domain), "natural_language": create_conversational_patterns(domain) } return PatternSpec( patterns=enhanced_patterns, categories=pattern_categories, minimum_target=10 # Target: 10-15 patterns ) ``` --- ## โš™๏ธ **Phase 5: Implementation Protocol** ### **When to Apply** After detection system is designed. ### **Critical Implementation Order (MANDATORY)** #### **Step 5.1: Create marketplace.json IMMEDIATELY** ```python # STEP 0.1: Create basic structure def create_marketplace_json_first(domain: str, description: str) -> bool: """Create marketplace.json BEFORE any other files - MANDATORY""" marketplace_template = { "name": f"{domain.lower()}-skill-name", "owner": {"name": "Agent Creator", "email": "noreply@example.com"}, "metadata": { "description": description, # Will be synchronized later "version": "1.0.0", "created": datetime.now().strftime("%Y-%m-%d"), "language": "en-US" }, "plugins": [{ "name": f"{domain.lower()}-plugin", "description": description, # MUST match SKILL.md description "source": "./", "strict": false, "skills": ["./"] }], "activation": { "keywords": [], # Will be populated in Phase 4 "patterns": [] # Will be populated in Phase 4 }, "capabilities": {}, "usage": { "example": "", "when_to_use": [], "when_not_to_use": [] }, "test_queries": [] } # Create file immediately with open('.claude-plugin/marketplace.json', 'w') as f: json.dump(marketplace_template, f, indent=2) return True ``` #### **Step 5.2: Validate marketplace.json** ```python def validate_marketplace_json() -> ValidationResult: """Validate marketplace.json immediately after creation - MANDATORY""" validation_checks = { "syntax_valid": validate_json_syntax('.claude-plugin/marketplace.json'), "required_fields": check_required_fields('.claude-plugin/marketplace.json'), "structure_valid": validate_marketplace_structure('.claude-plugin/marketplace.json') } if not all(validation_checks.values()): raise ValidationError("marketplace.json validation failed - FIX BEFORE CONTINUING") return ValidationResult(passed=True, checks=validation_checks) ``` #### **Step 5.3: Create SKILL.md with Frontmatter** ```python def create_skill_md(domain: str, description: str, detection_spec: DetectionSpec) -> bool: """Create SKILL.md with proper frontmatter - MANDATORY""" frontmatter = f"""--- name: {domain.lower()}-skill-name description: {description} --- # {domain.title()} Skill [... rest of SKILL.md content ...] """ with open('SKILL.md', 'w') as f: f.write(frontmatter) return True ``` #### **Step 5.4: CRITICAL Synchronization Check** ```python def synchronize_descriptions() -> bool: """MANDATORY: SKILL.md description MUST EQUAL marketplace.json description""" skill_description = extract_frontmatter_description('SKILL.md') marketplace_description = extract_marketplace_description('.claude-plugin/marketplace.json') if skill_description != marketplace_description: # Fix marketplace.json to match SKILL.md update_marketplace_description('.claude-plugin/marketplace.json', skill_description) print("๐Ÿ”ง FIXED: Synchronized SKILL.md description with marketplace.json") return True ``` #### **Step 5.5: Implementation Order (MANDATORY)** ```python # Implementation sequence IMPLEMENTATION_ORDER = { 1: "utils/helpers.py (MANDATORY)", 2: "utils/validators/ (MANDATORY - 4 validators minimum)", 3: "Modular parsers (1 per data type - MANDATORY)", 4: "Main analysis scripts", 5: "comprehensive_{domain}_report() (MANDATORY)", 6: "tests/ directory", 7: "README.md and documentation" } ``` ### **Code Implementation Standards** #### **No Placeholders Rule** ```python # โŒ FORBIDDEN - No placeholders or TODOs def analyze_data(data): # TODO: implement analysis pass # โœ… REQUIRED - Complete implementation def analyze_data(data: pd.DataFrame) -> Dict[str, Any]: """Analyze domain data with comprehensive metrics""" if data.empty: raise ValueError("Data cannot be empty") # Complete implementation with error handling try: analysis_results = { "trend_analysis": calculate_trends(data), "performance_metrics": calculate_performance(data), "statistical_summary": generate_statistics(data) } return analysis_results except Exception as e: logger.error(f"Analysis failed: {e}") raise AnalysisError(f"Unable to analyze data: {e}") ``` #### **Documentation Standards** ```python # โœ… REQUIRED: Complete docstrings def calculate_growth_rate(values: List[float]) -> float: """ Calculate compound annual growth rate (CAGR) for a series of values. Args: values: List of numeric values in chronological order Returns: Compound annual growth rate as decimal (0.15 = 15%) Raises: ValueError: If less than 2 values or contains non-numeric data Example: >>> calculate_growth_rate([100, 115, 132.25]) 0.15 # 15% CAGR """ # Implementation... ``` --- ## ๐Ÿงช **Phase 6: Testing Protocol** ### **When to Apply** After implementation is complete. ### **Mandatory Test Requirements** #### **Step 6.1: Test Suite Structure** ```python MANDATORY_TEST_STRUCTURE = { "tests/": { "test_integration.py": "โ‰ฅ5 end-to-end tests - MANDATORY", "test_parse.py": "1 test per parser - MANDATORY", "test_analyze.py": "1 test per analysis function - MANDATORY", "test_helpers.py": "โ‰ฅ3 tests - MANDATORY", "test_validation.py": "โ‰ฅ5 tests - MANDATORY" }, "total_minimum_tests": 25, # Absolute minimum "all_tests_must_pass": True # No exceptions } ``` #### **Step 6.2: Integration Tests (MANDATORY)** ```python def create_integration_tests() -> List[TestSpec]: """Create โ‰ฅ5 end-to-end integration tests - MANDATORY""" integration_tests = [ { "name": "test_full_workflow_integration", "description": "Test complete workflow from API to report", "steps": [ "test_api_connection", "test_data_parsing", "test_analysis_execution", "test_report_generation" ] }, { "name": "test_error_handling_integration", "description": "Test error handling throughout system", "steps": [ "test_api_failure_handling", "test_invalid_data_handling", "test_missing_data_handling" ] } # ... 3+ more integration tests ] return integration_tests ``` #### **Step 6.3: Test Execution & Validation** ```python def execute_all_tests() -> TestResult: """Execute ALL tests and ensure they pass - MANDATORY""" test_results = {} # Execute each test file for test_file in MANDATORY_TEST_STRUCTURE["tests/"]: test_results[test_file] = execute_test_file(f"tests/{test_file}") # Validate all tests pass failed_tests = [test for test, result in test_results.items() if not result.passed] if failed_tests: raise TestError(f"FAILED TESTS: {failed_tests} - FIX BEFORE DELIVERY") print("โœ… ALL TESTS PASSED - Ready for delivery") return TestResult(passed=True, results=test_results) ``` --- ## ๐Ÿง  **AgentDB Learning Protocol** ### **When to Apply** After successful skill creation and testing. ### **Automatic Episode Storage** ```python def store_creation_episode(user_input: str, creation_result: CreationResult) -> str: """Store successful creation episode for future learning - AUTOMATIC""" try: bridge = get_real_agentdb_bridge() episode = Episode( session_id=f"agent-creation-{datetime.now().strftime('%Y%m%d-%H%M%S')}", task=user_input, input=f"Domain: {creation_result.domain}, API: {creation_result.api}", output=f"Created: {creation_result.agent_name}/ with {creation_result.file_count} files", critique=f"Success: {'โœ… High quality' if creation_result.all_tests_passed else 'โš ๏ธ Needs refinement'}", reward=0.9 if creation_result.all_tests_passed else 0.7, success=creation_result.all_tests_passed, latency_ms=creation_result.creation_time_seconds * 1000, tokens_used=creation_result.estimated_tokens, tags=[creation_result.domain, creation_result.api, creation_result.architecture_type], metadata={ "agent_name": creation_result.agent_name, "domain": creation_result.domain, "api": creation_result.api, "complexity": creation_result.complexity, "files_created": creation_result.file_count, "validation_passed": creation_result.all_tests_passed } ) episode_id = bridge.store_episode(episode) print(f"๐Ÿง  Episode stored for learning: #{episode_id}") # Create skill if successful if creation_result.all_tests_passed and bridge.is_available: skill = Skill( name=f"{creation_result.domain}_agent_template", description=f"Proven template for {creation_result.domain} agents", code=f"API: {creation_result.api}, Structure: {creation_result.architecture}", success_rate=1.0, uses=1, avg_reward=0.9, metadata={"domain": creation_result.domain, "api": creation_result.api} ) skill_id = bridge.create_skill(skill) print(f"๐ŸŽฏ Skill created: #{skill_id}") return episode_id except Exception as e: # AgentDB failure should not break agent creation print("๐Ÿ”„ AgentDB learning unavailable - agent creation completed successfully") return None ``` ### **Learning Progress Integration** ```python def provide_learning_feedback(episode_count: int, success_rate: float) -> str: """Provide subtle feedback about learning progress""" if episode_count == 1: return "๐ŸŽ‰ First agent created successfully!" elif episode_count == 10: return "โšก Agent creation optimized based on 10 successful patterns" elif episode_count >= 30: return "๐ŸŒŸ I've learned your preferences - future creations will be optimized" return "" ``` --- ## ๐Ÿšจ **Critical Protocol Violations & Prevention** ### **Common Violations to Avoid** #### **โŒ Forbidden Actions** ```python FORBIDDEN_ACTIONS = { "asking_user_questions": "Except for critical business decisions", "creating_placeholders": "No TODOs or pass statements", "skipping_validations": "All validations must pass", "ignoring_mandatory_structure": "Required files/dirs must be created", "poor_documentation": "Must include complete docstrings and comments", "failing_tests": "All tests must pass before delivery" } ``` #### **โš ๏ธ Quality Gates** ```python QUALITY_GATES = { "pre_implementation": [ "marketplace.json created and validated", "SKILL.md created with frontmatter", "descriptions synchronized" ], "post_implementation": [ "all mandatory files created", "no placeholders or TODOs", "complete error handling", "comprehensive documentation" ], "pre_delivery": [ "all tests created (โ‰ฅ25)", "all tests pass", "marketplace test command successful", "AgentDB episode stored" ] } ``` ### **Delivery Validation Protocol** ```python def final_delivery_validation() -> ValidationResult: """Final MANDATORY validation before delivery""" validation_steps = [ ("marketplace_syntax", validate_marketplace_syntax), ("description_sync", validate_description_synchronization), ("import_validation", validate_all_imports), ("placeholder_check", check_no_placeholders), ("test_execution", execute_all_tests), ("marketplace_installation", test_marketplace_installation) ] results = {} for step_name, validation_func in validation_steps: try: results[step_name] = validation_func() except Exception as e: results[step_name] = ValidationResult(passed=False, error=str(e)) failed_steps = [step for step, result in results.items() if not result.passed] if failed_steps: raise ValidationError(f"DELIVERY BLOCKED - Failed validations: {failed_steps}") return ValidationResult(passed=True, validations=results) ``` --- ## ๐Ÿ“‹ **Complete Protocol Checklist** ### **Pre-Creation Validation** - [ ] User request triggers skill creation protocol - [ ] Agent-Skill-Cursor activates correctly - [ ] Initial domain analysis complete ### **Phase 1: Discovery** - [ ] Domain identified and analyzed - [ ] API researched and selected (with justification) - [ ] API completeness analysis completed (โ‰ฅ50% coverage) - [ ] Multi-agent/transcript analysis if applicable - [ ] Creation strategy determined ### **Phase 2: Design** - [ ] Use cases defined (4-6 analyses + comprehensive report) - [ ] Methodologies specified for each analysis - [ ] Value proposition and ROI calculated - [ ] Design decisions documented ### **Phase 3: Architecture** - [ ] Modular architecture designed - [ ] Parser architecture planned (1 per data type) - [ ] Validation system planned (4+ validators) - [ ] Helper functions specified - [ ] File structure finalized ### **Phase 4: Detection (Enhanced)** - [ ] 50-80 keywords generated across 5 categories - [ ] 10-15 enhanced patterns created - [ ] Context-aware filters configured - [ ] Multi-intent detection configured - [ ] marketplace.json activation section populated ### **Phase 5: Implementation** - [ ] marketplace.json created FIRST and validated - [ ] SKILL.md created with synchronized description - [ ] utils/helpers.py implemented (MANDATORY) - [ ] utils/validators/ implemented (4+ validators) - [ ] Modular parsers implemented (1 per data type) - [ ] Main analysis scripts implemented - [ ] comprehensive_{domain}_report() implemented (MANDATORY) - [ ] No placeholders or TODOs anywhere - [ ] Complete error handling throughout - [ ] Comprehensive documentation written ### **Phase 6: Testing** - [ ] tests/ directory created - [ ] โ‰ฅ25 tests implemented across all categories - [ ] ALL tests pass - [ ] Integration tests successful - [ ] Marketplace installation test successful ### **Final Delivery** - [ ] Final validation passed - [ ] AgentDB episode stored - [ ] Learning feedback provided if applicable - [ ] Ready for user delivery --- ## ๐ŸŽฏ **Protocol Success Metrics** ### **Quality Indicators** - **Activation Reliability**: โ‰ฅ99.5% - **False Positive Rate**: <1% - **Code Coverage**: โ‰ฅ90% - **Test Pass Rate**: 100% - **Documentation Completeness**: 100% - **User Satisfaction**: โ‰ฅ95% ### **Learning Indicators** - **Episodes Stored**: 100% of successful creations - **Pattern Recognition**: Improves with each creation - **Decision Quality**: Enhanced by AgentDB learning - **Template Success Rate**: Tracked and optimized --- **Version:** 1.0 **Last Updated:** 2025-10-24 **Maintained By:** Agent-Skill-Creator Team