# Agent-Skill-Creator Internal Flow: What Happens "Under the Hood" ## ๐ŸŽฏ **Example Scenario** **User Command:** ``` "I'd like to automate what is being explained and described in this article [financial data analysis article content]" ``` ## ๐Ÿš€ **Complete Detailed Flow** ### **PHASE 0: Detection and Automatic Activation** #### **0.1 User Intent Analysis** Claude Code analyzes the command and detects activation patterns: ``` DETECTED PATTERNS: โœ… "automate" โ†’ Workflow automation activation โœ… "what is being explained" โ†’ External content processing โœ… "in this article" โ†’ Transcribed/intent processing โœ… Complete command โ†’ Activates Agent-Skill-Creator ``` #### **0.2 Meta-Skill Loading** ```python # Claude Code internal system if matches_pattern(user_input, SKILL_ACTIVATION_PATTERNS): load_skill("agent-creator-en-v2") activate_5_phase_process(user_input) ``` **What happens:** - The agent-creator's `SKILL.md` is loaded into memory - The skill context is prepared - The 5 phases are initialized --- ### **PHASE 1: DISCOVERY - Research and Analysis** #### **1.1 Article Content Processing** ```python # Internal processing simulation def analyze_article_content(article_text): # Structured information extraction workflows = extract_workflows(article_text) tools_mentioned = identify_tools(article_text) data_sources = find_data_sources(article_text) complexity_assessment = estimate_complexity(article_text) return { 'workflows': workflows, 'tools': tools_mentioned, 'data_sources': data_sources, 'complexity': complexity_assessment } ``` **Practical Example - Financial Analysis Article:** ``` ANALYZED ARTICLE CONTENT: โ”œโ”€ Identified Workflows: โ”‚ โ”œโ”€ "Download stock market data" โ”‚ โ”œโ”€ "Calculate technical indicators" โ”‚ โ”œโ”€ "Generate analysis charts" โ”‚ โ””โ”€ "Create weekly report" โ”œโ”€ Mentioned Tools: โ”‚ โ”œโ”€ "pandas library" โ”‚ โ”œโ”€ "Alpha Vantage API" โ”‚ โ”œโ”€ "Matplotlib for charts" โ”‚ โ””โ”€ "Excel for reports" โ””โ”€ Data Sources: โ”œโ”€ "Yahoo Finance API" โ”œโ”€ "Local CSV files" โ””โ”€ "SQL database" ``` #### **1.2 API and Tools Research** ```bash # Automatic WebSearch performed by Claude WebSearch: "Best Python libraries for financial data analysis 2025" WebSearch: "Alpha Vantage API documentation Python integration" WebSearch: "Financial reporting automation tools Python" ``` #### **1.3 AgentDB Enhancement (if available)** ```python # Transparent AgentDB integration agentdb_insights = query_agentdb_for_patterns("financial_analysis") if agentdb_insights.success_rate > 0.8: apply_learned_patterns(agentdb_insights.patterns) ``` #### **1.4 Technology Stack Decision** ``` TECHNICAL DECISION: โœ… Python as primary language โœ… pandas for data manipulation โœ… Alpha Vantage for market data โœ… Matplotlib/Seaborn for visualizations โœ… ReportLab for PDF generation ``` --- ### **PHASE 2: DESIGN - Functionality Specification** #### **2.1 Use Case Analysis** ```python def define_use_cases(workflows_identified): use_cases = [] for workflow in workflows_identified: use_case = { 'name': workflow['title'], 'description': workflow['description'], 'inputs': workflow['required_inputs'], 'outputs': workflow['expected_outputs'], 'frequency': workflow['frequency'], 'complexity': workflow['complexity_level'] } use_cases.append(use_case) return use_cases ``` **Defined Use Cases:** ``` USE CASE 1: Data Acquisition - Description: Download historical stock data - Input: List of tickers, period - Output: DataFrame with OHLCV data - Frequency: Daily USE CASE 2: Technical Analysis - Description: Calculate technical indicators - Input: Price DataFrame - Output: DataFrame with indicators - Frequency: On demand USE CASE 3: Report Generation - Description: Create PDF report - Input: Analysis results - Output: Formatted report - Frequency: Weekly ``` #### **2.2 Methodology Definition** ```python def specify_methodologies(use_cases): methodologies = { 'data_validation': 'Data quality validation', 'error_handling': 'Robust error handling', 'caching_strategy': 'Data caching for performance', 'logging': 'Detailed logging for debugging', 'configuration': 'Flexible configuration via JSON' } return methodologies ``` --- ### **PHASE 3: ARCHITECTURE - Structural Decision** #### **3.1 Complexity Analysis (DECISION_LOGIC.md applied)** ```python # Automatic evaluation based on article content complexity_score = calculate_complexity({ 'number_of_workflows': 4, # Data + Analysis + Reports + Alerts 'workflow_complexity': 'medium', # API calls + calculations + formatting 'data_sources': 3, # Yahoo Finance + CSV + Database 'estimated_code_lines': 2500, # Above Simple Skill threshold 'domain_expertise': ['finance', 'data_science', 'reporting'] }) # Architecture decision if complexity_score > SIMPLE_SKILL_THRESHOLD: architecture = "complex_skill_suite" else: architecture = "simple_skill" ``` **In this example:** ``` ANALYSIS RESULT: โœ… Multiple distinct workflows (4) โœ… Medium-high complexity โœ… Multiple data sources โœ… Estimate > 2000 lines of code โœ… Multiple domains of expertise DECISION: Complex Skill Suite GENERATED NAME: financial-analysis-suite-cskill ``` #### **3.2 Component Structure Definition** ```python def design_component_skills(complexity_analysis): if complexity_analysis.architecture == "complex_skill_suite": components = { 'data-acquisition': 'Handle data sourcing and validation', 'technical-analysis': 'Calculate indicators and signals', 'visualization': 'Create charts and graphs', 'reporting': 'Generate professional reports' } return components ``` #### **3.3 Performance and Cache Planning** ```python performance_plan = { 'data_cache': 'Cache market data for 1 day', 'calculation_cache': 'Cache expensive calculations', 'parallel_processing': 'Process multiple stocks concurrently', 'batch_operations': 'Batch API calls when possible' } ``` --- ### **PHASE 4: DETECTION - Keywords and Activation** #### **4.1 Keyword Analysis** ```python def determine_activation_keywords(workflows, tools): keywords = { 'primary': [ 'financial analysis', 'market data', 'technical indicators', 'investment reports' ], 'secondary': [ 'automate analysis', 'generate charts', 'calculate returns', 'data extraction' ], 'domains': [ 'finance', 'investments', 'quantitative analysis', 'stock market' ] } return keywords ``` #### **4.2 Precise Description Creation** ```python def create_skill_descriptions(components): descriptions = {} for component_name, component_function in components.items(): description = f""" Component skill for {component_function} in financial analysis. When to use: When user mentions {determine_activation_keywords(component_name)} Capabilities: {list_component_capabilities(component_name)} """ descriptions[component_name] = description return descriptions ``` --- ### **PHASE 5: IMPLEMENTATION - Code Creation** #### **5.1 Directory Structure Creation** ```bash # Automatically created by the system mkdir -p financial-analysis-suite/.claude-plugin mkdir -p financial-analysis-suite/data-acquisition/{scripts,references,assets} mkdir -p financial-analysis-suite/technical-analysis/{scripts,references,assets} mkdir -p financial-analysis-suite/visualization/{scripts,references,assets} mkdir -p financial-analysis-suite/reporting/{scripts,references,assets} mkdir -p financial-analysis-suite/shared/{utils,config,templates} ``` #### **5.2 marketplace.json Generation** ```json { "name": "financial-analysis-suite", "plugins": [ { "name": "data-acquisition", "source": "./data-acquisition/", "skills": ["./SKILL.md"] }, { "name": "technical-analysis", "source": "./technical-analysis/", "skills": ["./SKILL.md"] } ] } ``` #### **5.3 SKILL.md Files Creation** For each component, the system generates: ```markdown --- name: data-acquisition description: Component skill for acquiring financial market data from multiple sources including APIs, CSV files, and real-time feeds. --- # Financial Data Acquisition This component skill handles all data acquisition needs for the financial analysis suite. ## When to Use This Component Skill Use this skill when you need to: - Download market data from APIs (Alpha Vantage, Yahoo Finance) - Import data from CSV/Excel files - Validate and clean financial data - Store data in standardized format ``` #### **5.4 Python Scripts Generation** ```python # data-acquisition/scripts/fetch_data.py import pandas as pd import yfinance as yf from datetime import datetime, timedelta class FinancialDataFetcher: def __init__(self, config_file='config/data_sources.json'): self.config = self.load_config(config_file) def fetch_stock_data(self, tickers, period='1y'): """Fetch historical stock data for given tickers""" data = {} for ticker in tickers: try: stock = yf.Ticker(ticker) data[ticker] = stock.history(period=period) logger.info(f"Successfully fetched data for {ticker}") except Exception as e: logger.error(f"Failed to fetch data for {ticker}: {e}") return data def validate_data_quality(self, data): """Validate the quality of fetched data""" validation_results = {} for ticker, df in data.items(): results = { 'missing_data_pct': df.isnull().sum().sum() / df.size, 'date_range': f"{df.index.min()} to {df.index.max()}", 'completeness': len(df) / 252 # Trading days } validation_results[ticker] = results return validation_results ``` #### **5.5 Configuration Files Creation** ```json // shared/config/data_sources.json { "api_keys": { "alpha_vantage": "YOUR_API_KEY_HERE", "quandl": "YOUR_QUANDL_KEY_HERE" }, "data_sources": { "yahoo_finance": { "enabled": true, "rate_limit": 2000, "timeout": 30 }, "alpha_vantage": { "enabled": true, "rate_limit": 5, "timeout": 60 } }, "cache_settings": { "market_data_ttl": 86400, "calculations_ttl": 3600 } } ``` #### **5.6 Documentation and References Generation** ```markdown # data-acquisition/references/api_documentation.md ## Alpha Vantage API - **Endpoint**: TIME_SERIES_DAILY - **Rate Limit**: 5 calls/minute (free tier) - **Data Format**: JSON - **Authentication**: API Key in header ## Yahoo Finance (yfinance) - **Library**: yfinance - **Rate Limit**: None documented (be reasonable) - **Data Format**: pandas DataFrame - **Authentication**: None required ``` #### **5.7 Main README Creation** ```markdown # Financial Analysis Suite Complete automated financial analysis system that processes market data, performs technical analysis, and generates professional investment reports. ## Quick Start 1. Install dependencies: `pip install -r requirements.txt` 2. Configure API keys in `shared/config/data_sources.json` 3. Install as Claude plugin: `/plugin marketplace add ./` 4. Use: "Analyze AAPL, MSFT, GOOG performance and create weekly report" ## Components - **Data Acquisition**: Automated market data collection - **Technical Analysis**: Indicator calculations and signal generation - **Visualization**: Chart creation and trend analysis - **Reporting**: Professional PDF report generation ``` #### **5.8 Automatic Installation Test** ```python # scripts/test_installation.py def test_suite_installation(): """Test that all components work correctly""" print("๐Ÿงช Testing Financial Analysis Suite installation...") # Test imports try: import pandas as pd import yfinance as yf import matplotlib.pyplot as plt print("โœ… All dependencies imported successfully") except ImportError as e: print(f"โŒ Missing dependency: {e}") return False # Test configuration try: with open('shared/config/data_sources.json') as f: config = json.load(f) print("โœ… Configuration file loaded successfully") except FileNotFoundError: print("โŒ Configuration file missing") return False # Test basic functionality try: test_data = yf.download('AAPL', period='1mo') if not test_data.empty: print("โœ… Basic data fetching works") else: print("โŒ Data fetching failed") return False except Exception as e: print(f"โŒ Basic functionality test failed: {e}") return False print("๐ŸŽ‰ All tests passed! Suite is ready to use.") return True if __name__ == "__main__": test_suite_installation() ``` --- ## ๐ŸŽฏ **Final Result - What the User Receives** After approximately **45-90 minutes** of autonomous processing, the user will have: ``` financial-analysis-suite-cskill/ โ”œโ”€โ”€ .claude-plugin/ โ”‚ โ””โ”€โ”€ marketplace.json โ† Suite manifest โ”œโ”€โ”€ data-acquisition-cskill/ โ”‚ โ”œโ”€โ”€ SKILL.md โ† Component skill 1 โ”‚ โ”œโ”€โ”€ scripts/ โ”‚ โ”‚ โ”œโ”€โ”€ fetch_data.py โ† Functional code โ”‚ โ”‚ โ”œโ”€โ”€ validate_data.py โ† Validation โ”‚ โ”‚ โ””โ”€โ”€ cache_manager.py โ† Cache โ”‚ โ”œโ”€โ”€ references/ โ”‚ โ”‚ โ””โ”€โ”€ api_documentation.md โ† Documentation โ”‚ โ””โ”€โ”€ assets/ โ”œโ”€โ”€ technical-analysis-cskill/ โ”‚ โ”œโ”€โ”€ SKILL.md โ† Component skill 2 โ”‚ โ”œโ”€โ”€ scripts/ โ”‚ โ”‚ โ”œโ”€โ”€ indicators.py โ† Technical calculations โ”‚ โ”‚ โ”œโ”€โ”€ signals.py โ† Signal generation โ”‚ โ”‚ โ””โ”€โ”€ backtester.py โ† Historical tests โ”‚ โ””โ”€โ”€ references/ โ”œโ”€โ”€ visualization-cskill/ โ”‚ โ”œโ”€โ”€ SKILL.md โ† Component skill 3 โ”‚ โ””โ”€โ”€ scripts/chart_generator.py โ”œโ”€โ”€ reporting-cskill/ โ”‚ โ”œโ”€โ”€ SKILL.md โ† Component skill 4 โ”‚ โ””โ”€โ”€ scripts/report_generator.py โ”œโ”€โ”€ shared/ โ”‚ โ”œโ”€โ”€ utils/ โ”‚ โ”œโ”€โ”€ config/ โ”‚ โ””โ”€โ”€ templates/ โ”œโ”€โ”€ requirements.txt โ† Python dependencies โ”œโ”€โ”€ README.md โ† User guide โ”œโ”€โ”€ DECISIONS.md โ† Decision explanations โ””โ”€โ”€ test_installation.py โ† Automatic test ``` **Note:** All components use the "-cskill" convention to identify that they were created by Agent-Skill-Creator. ## ๐Ÿš€ **How to Use the Created Skill** **Immediately after creation:** ```bash # Install the suite cd financial-analysis-suite /plugin marketplace add ./ # Use the components "Analyze technical indicators for AAPL using the data acquisition and technical analysis components" "Generate a comprehensive financial report for portfolio [MSFT, GOOGL, TSLA]" "Compare performance of tech stocks using the analysis suite" ``` --- ## ๐Ÿง  **Intelligence Behind the Process** ### **What Makes This Possible:** 1. **Semantic Understanding**: Claude understands the article's content, not just keywords 2. **Structured Extraction**: Identifies workflows, tools, and patterns 3. **Autonomous Decision-Making**: Chooses the appropriate architecture without human intervention 4. **Functional Generation**: Creates code that actually works, not templates 5. **Continuous Learning**: With AgentDB, improves with each creation ### **Differential Compared to Simple Approaches:** | Simple Approach | Agent-Skill-Creator | |------------------|---------------------| | Generates templates | Creates functional code | | Requires programming | Fully autonomous | | No architecture decision | Architecture intelligence | | Basic documentation | Complete documentation | | Manual testing | Automatic testing | **Agent-Skill-Creator transforms articles and descriptions into fully functional, production-ready Claude Code skills!** ๐ŸŽ‰