Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:27:25 +08:00
commit e18b9b4fa8
77 changed files with 35441 additions and 0 deletions

View File

@@ -0,0 +1,545 @@
# Agent-Skill-Creator Internal Flow: What Happens "Under the Hood"
## 🎯 **Example Scenario**
**User Command:**
```
"I'd like to automate what is being explained and described in this article [financial data analysis article content]"
```
## 🚀 **Complete Detailed Flow**
### **PHASE 0: Detection and Automatic Activation**
#### **0.1 User Intent Analysis**
Claude Code analyzes the command and detects activation patterns:
```
DETECTED PATTERNS:
✅ "automate" → Workflow automation activation
✅ "what is being explained" → External content processing
✅ "in this article" → Transcribed/intent processing
✅ Complete command → Activates Agent-Skill-Creator
```
#### **0.2 Meta-Skill Loading**
```python
# Claude Code internal system
if matches_pattern(user_input, SKILL_ACTIVATION_PATTERNS):
load_skill("agent-creator-en-v2")
activate_5_phase_process(user_input)
```
**What happens:**
- The agent-creator's `SKILL.md` is loaded into memory
- The skill context is prepared
- The 5 phases are initialized
---
### **PHASE 1: DISCOVERY - Research and Analysis**
#### **1.1 Article Content Processing**
```python
# Internal processing simulation
def analyze_article_content(article_text):
# Structured information extraction
workflows = extract_workflows(article_text)
tools_mentioned = identify_tools(article_text)
data_sources = find_data_sources(article_text)
complexity_assessment = estimate_complexity(article_text)
return {
'workflows': workflows,
'tools': tools_mentioned,
'data_sources': data_sources,
'complexity': complexity_assessment
}
```
**Practical Example - Financial Analysis Article:**
```
ANALYZED ARTICLE CONTENT:
├─ Identified Workflows:
│ ├─ "Download stock market data"
│ ├─ "Calculate technical indicators"
│ ├─ "Generate analysis charts"
│ └─ "Create weekly report"
├─ Mentioned Tools:
│ ├─ "pandas library"
│ ├─ "Alpha Vantage API"
│ ├─ "Matplotlib for charts"
│ └─ "Excel for reports"
└─ Data Sources:
├─ "Yahoo Finance API"
├─ "Local CSV files"
└─ "SQL database"
```
#### **1.2 API and Tools Research**
```bash
# Automatic WebSearch performed by Claude
WebSearch: "Best Python libraries for financial data analysis 2025"
WebSearch: "Alpha Vantage API documentation Python integration"
WebSearch: "Financial reporting automation tools Python"
```
#### **1.3 AgentDB Enhancement (if available)**
```python
# Transparent AgentDB integration
agentdb_insights = query_agentdb_for_patterns("financial_analysis")
if agentdb_insights.success_rate > 0.8:
apply_learned_patterns(agentdb_insights.patterns)
```
#### **1.4 Technology Stack Decision**
```
TECHNICAL DECISION:
✅ Python as primary language
✅ pandas for data manipulation
✅ Alpha Vantage for market data
✅ Matplotlib/Seaborn for visualizations
✅ ReportLab for PDF generation
```
---
### **PHASE 2: DESIGN - Functionality Specification**
#### **2.1 Use Case Analysis**
```python
def define_use_cases(workflows_identified):
use_cases = []
for workflow in workflows_identified:
use_case = {
'name': workflow['title'],
'description': workflow['description'],
'inputs': workflow['required_inputs'],
'outputs': workflow['expected_outputs'],
'frequency': workflow['frequency'],
'complexity': workflow['complexity_level']
}
use_cases.append(use_case)
return use_cases
```
**Defined Use Cases:**
```
USE CASE 1: Data Acquisition
- Description: Download historical stock data
- Input: List of tickers, period
- Output: DataFrame with OHLCV data
- Frequency: Daily
USE CASE 2: Technical Analysis
- Description: Calculate technical indicators
- Input: Price DataFrame
- Output: DataFrame with indicators
- Frequency: On demand
USE CASE 3: Report Generation
- Description: Create PDF report
- Input: Analysis results
- Output: Formatted report
- Frequency: Weekly
```
#### **2.2 Methodology Definition**
```python
def specify_methodologies(use_cases):
methodologies = {
'data_validation': 'Data quality validation',
'error_handling': 'Robust error handling',
'caching_strategy': 'Data caching for performance',
'logging': 'Detailed logging for debugging',
'configuration': 'Flexible configuration via JSON'
}
return methodologies
```
---
### **PHASE 3: ARCHITECTURE - Structural Decision**
#### **3.1 Complexity Analysis (DECISION_LOGIC.md applied)**
```python
# Automatic evaluation based on article content
complexity_score = calculate_complexity({
'number_of_workflows': 4, # Data + Analysis + Reports + Alerts
'workflow_complexity': 'medium', # API calls + calculations + formatting
'data_sources': 3, # Yahoo Finance + CSV + Database
'estimated_code_lines': 2500, # Above Simple Skill threshold
'domain_expertise': ['finance', 'data_science', 'reporting']
})
# Architecture decision
if complexity_score > SIMPLE_SKILL_THRESHOLD:
architecture = "complex_skill_suite"
else:
architecture = "simple_skill"
```
**In this example:**
```
ANALYSIS RESULT:
✅ Multiple distinct workflows (4)
✅ Medium-high complexity
✅ Multiple data sources
✅ Estimate > 2000 lines of code
✅ Multiple domains of expertise
DECISION: Complex Skill Suite
GENERATED NAME: financial-analysis-suite-cskill
```
#### **3.2 Component Structure Definition**
```python
def design_component_skills(complexity_analysis):
if complexity_analysis.architecture == "complex_skill_suite":
components = {
'data-acquisition': 'Handle data sourcing and validation',
'technical-analysis': 'Calculate indicators and signals',
'visualization': 'Create charts and graphs',
'reporting': 'Generate professional reports'
}
return components
```
#### **3.3 Performance and Cache Planning**
```python
performance_plan = {
'data_cache': 'Cache market data for 1 day',
'calculation_cache': 'Cache expensive calculations',
'parallel_processing': 'Process multiple stocks concurrently',
'batch_operations': 'Batch API calls when possible'
}
```
---
### **PHASE 4: DETECTION - Keywords and Activation**
#### **4.1 Keyword Analysis**
```python
def determine_activation_keywords(workflows, tools):
keywords = {
'primary': [
'financial analysis',
'market data',
'technical indicators',
'investment reports'
],
'secondary': [
'automate analysis',
'generate charts',
'calculate returns',
'data extraction'
],
'domains': [
'finance',
'investments',
'quantitative analysis',
'stock market'
]
}
return keywords
```
#### **4.2 Precise Description Creation**
```python
def create_skill_descriptions(components):
descriptions = {}
for component_name, component_function in components.items():
description = f"""
Component skill for {component_function} in financial analysis.
When to use: When user mentions {determine_activation_keywords(component_name)}
Capabilities: {list_component_capabilities(component_name)}
"""
descriptions[component_name] = description
return descriptions
```
---
### **PHASE 5: IMPLEMENTATION - Code Creation**
#### **5.1 Directory Structure Creation**
```bash
# Automatically created by the system
mkdir -p financial-analysis-suite/.claude-plugin
mkdir -p financial-analysis-suite/data-acquisition/{scripts,references,assets}
mkdir -p financial-analysis-suite/technical-analysis/{scripts,references,assets}
mkdir -p financial-analysis-suite/visualization/{scripts,references,assets}
mkdir -p financial-analysis-suite/reporting/{scripts,references,assets}
mkdir -p financial-analysis-suite/shared/{utils,config,templates}
```
#### **5.2 marketplace.json Generation**
```json
{
"name": "financial-analysis-suite",
"plugins": [
{
"name": "data-acquisition",
"source": "./data-acquisition/",
"skills": ["./SKILL.md"]
},
{
"name": "technical-analysis",
"source": "./technical-analysis/",
"skills": ["./SKILL.md"]
}
]
}
```
#### **5.3 SKILL.md Files Creation**
For each component, the system generates:
```markdown
---
name: data-acquisition
description: Component skill for acquiring financial market data from multiple sources including APIs, CSV files, and real-time feeds.
---
# Financial Data Acquisition
This component skill handles all data acquisition needs for the financial analysis suite.
## When to Use This Component Skill
Use this skill when you need to:
- Download market data from APIs (Alpha Vantage, Yahoo Finance)
- Import data from CSV/Excel files
- Validate and clean financial data
- Store data in standardized format
```
#### **5.4 Python Scripts Generation**
```python
# data-acquisition/scripts/fetch_data.py
import pandas as pd
import yfinance as yf
from datetime import datetime, timedelta
class FinancialDataFetcher:
def __init__(self, config_file='config/data_sources.json'):
self.config = self.load_config(config_file)
def fetch_stock_data(self, tickers, period='1y'):
"""Fetch historical stock data for given tickers"""
data = {}
for ticker in tickers:
try:
stock = yf.Ticker(ticker)
data[ticker] = stock.history(period=period)
logger.info(f"Successfully fetched data for {ticker}")
except Exception as e:
logger.error(f"Failed to fetch data for {ticker}: {e}")
return data
def validate_data_quality(self, data):
"""Validate the quality of fetched data"""
validation_results = {}
for ticker, df in data.items():
results = {
'missing_data_pct': df.isnull().sum().sum() / df.size,
'date_range': f"{df.index.min()} to {df.index.max()}",
'completeness': len(df) / 252 # Trading days
}
validation_results[ticker] = results
return validation_results
```
#### **5.5 Configuration Files Creation**
```json
// shared/config/data_sources.json
{
"api_keys": {
"alpha_vantage": "YOUR_API_KEY_HERE",
"quandl": "YOUR_QUANDL_KEY_HERE"
},
"data_sources": {
"yahoo_finance": {
"enabled": true,
"rate_limit": 2000,
"timeout": 30
},
"alpha_vantage": {
"enabled": true,
"rate_limit": 5,
"timeout": 60
}
},
"cache_settings": {
"market_data_ttl": 86400,
"calculations_ttl": 3600
}
}
```
#### **5.6 Documentation and References Generation**
```markdown
# data-acquisition/references/api_documentation.md
## Alpha Vantage API
- **Endpoint**: TIME_SERIES_DAILY
- **Rate Limit**: 5 calls/minute (free tier)
- **Data Format**: JSON
- **Authentication**: API Key in header
## Yahoo Finance (yfinance)
- **Library**: yfinance
- **Rate Limit**: None documented (be reasonable)
- **Data Format**: pandas DataFrame
- **Authentication**: None required
```
#### **5.7 Main README Creation**
```markdown
# Financial Analysis Suite
Complete automated financial analysis system that processes market data, performs technical analysis, and generates professional investment reports.
## Quick Start
1. Install dependencies: `pip install -r requirements.txt`
2. Configure API keys in `shared/config/data_sources.json`
3. Install as Claude plugin: `/plugin marketplace add ./`
4. Use: "Analyze AAPL, MSFT, GOOG performance and create weekly report"
## Components
- **Data Acquisition**: Automated market data collection
- **Technical Analysis**: Indicator calculations and signal generation
- **Visualization**: Chart creation and trend analysis
- **Reporting**: Professional PDF report generation
```
#### **5.8 Automatic Installation Test**
```python
# scripts/test_installation.py
def test_suite_installation():
"""Test that all components work correctly"""
print("🧪 Testing Financial Analysis Suite installation...")
# Test imports
try:
import pandas as pd
import yfinance as yf
import matplotlib.pyplot as plt
print("✅ All dependencies imported successfully")
except ImportError as e:
print(f"❌ Missing dependency: {e}")
return False
# Test configuration
try:
with open('shared/config/data_sources.json') as f:
config = json.load(f)
print("✅ Configuration file loaded successfully")
except FileNotFoundError:
print("❌ Configuration file missing")
return False
# Test basic functionality
try:
test_data = yf.download('AAPL', period='1mo')
if not test_data.empty:
print("✅ Basic data fetching works")
else:
print("❌ Data fetching failed")
return False
except Exception as e:
print(f"❌ Basic functionality test failed: {e}")
return False
print("🎉 All tests passed! Suite is ready to use.")
return True
if __name__ == "__main__":
test_suite_installation()
```
---
## 🎯 **Final Result - What the User Receives**
After approximately **45-90 minutes** of autonomous processing, the user will have:
```
financial-analysis-suite-cskill/
├── .claude-plugin/
│ └── marketplace.json ← Suite manifest
├── data-acquisition-cskill/
│ ├── SKILL.md ← Component skill 1
│ ├── scripts/
│ │ ├── fetch_data.py ← Functional code
│ │ ├── validate_data.py ← Validation
│ │ └── cache_manager.py ← Cache
│ ├── references/
│ │ └── api_documentation.md ← Documentation
│ └── assets/
├── technical-analysis-cskill/
│ ├── SKILL.md ← Component skill 2
│ ├── scripts/
│ │ ├── indicators.py ← Technical calculations
│ │ ├── signals.py ← Signal generation
│ │ └── backtester.py ← Historical tests
│ └── references/
├── visualization-cskill/
│ ├── SKILL.md ← Component skill 3
│ └── scripts/chart_generator.py
├── reporting-cskill/
│ ├── SKILL.md ← Component skill 4
│ └── scripts/report_generator.py
├── shared/
│ ├── utils/
│ ├── config/
│ └── templates/
├── requirements.txt ← Python dependencies
├── README.md ← User guide
├── DECISIONS.md ← Decision explanations
└── test_installation.py ← Automatic test
```
**Note:** All components use the "-cskill" convention to identify that they were created by Agent-Skill-Creator.
## 🚀 **How to Use the Created Skill**
**Immediately after creation:**
```bash
# Install the suite
cd financial-analysis-suite
/plugin marketplace add ./
# Use the components
"Analyze technical indicators for AAPL using the data acquisition and technical analysis components"
"Generate a comprehensive financial report for portfolio [MSFT, GOOGL, TSLA]"
"Compare performance of tech stocks using the analysis suite"
```
---
## 🧠 **Intelligence Behind the Process**
### **What Makes This Possible:**
1. **Semantic Understanding**: Claude understands the article's content, not just keywords
2. **Structured Extraction**: Identifies workflows, tools, and patterns
3. **Autonomous Decision-Making**: Chooses the appropriate architecture without human intervention
4. **Functional Generation**: Creates code that actually works, not templates
5. **Continuous Learning**: With AgentDB, improves with each creation
### **Differential Compared to Simple Approaches:**
| Simple Approach | Agent-Skill-Creator |
|------------------|---------------------|
| Generates templates | Creates functional code |
| Requires programming | Fully autonomous |
| No architecture decision | Architecture intelligence |
| Basic documentation | Complete documentation |
| Manual testing | Automatic testing |
**Agent-Skill-Creator transforms articles and descriptions into fully functional, production-ready Claude Code skills!** 🎉