Initial commit
This commit is contained in:
@@ -0,0 +1,685 @@
|
||||
# Context-Aware Activation System v1.0
|
||||
|
||||
**Version:** 1.0
|
||||
**Purpose:** Advanced context filtering for precise skill activation and false positive reduction
|
||||
**Target:** Reduce false positives from 2% to <1% while maintaining 99.5%+ reliability
|
||||
|
||||
---
|
||||
|
||||
## 🎯 **Overview**
|
||||
|
||||
Context-Aware Activation enhances the 3-Layer Activation System by analyzing the semantic and contextual environment of user queries to ensure skills activate only in appropriate situations.
|
||||
|
||||
### **Problem Solved**
|
||||
|
||||
**Before:** Skills activated based purely on keyword/pattern matching, leading to false positives in inappropriate contexts
|
||||
**After:** Skills evaluate contextual relevance before activation, dramatically reducing inappropriate activations
|
||||
|
||||
---
|
||||
|
||||
## 🧠 **Context Analysis Framework**
|
||||
|
||||
### **Multi-Dimensional Context Analysis**
|
||||
|
||||
The system evaluates query context across multiple dimensions:
|
||||
|
||||
#### **1. Domain Context**
|
||||
```json
|
||||
{
|
||||
"domain_context": {
|
||||
"current_domain": "finance",
|
||||
"confidence": 0.92,
|
||||
"related_domains": ["trading", "investment", "market"],
|
||||
"excluded_domains": ["healthcare", "education", "entertainment"]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### **2. Task Context**
|
||||
```json
|
||||
{
|
||||
"task_context": {
|
||||
"current_task": "analysis",
|
||||
"task_stage": "exploration",
|
||||
"task_complexity": "medium",
|
||||
"required_capabilities": ["data_processing", "calculation"]
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### **3. User Intent Context**
|
||||
```json
|
||||
{
|
||||
"intent_context": {
|
||||
"primary_intent": "analyze",
|
||||
"secondary_intents": ["compare", "evaluate"],
|
||||
"intent_strength": 0.87,
|
||||
"urgency_level": "medium"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
#### **4. Conversational Context**
|
||||
```json
|
||||
{
|
||||
"conversational_context": {
|
||||
"conversation_stage": "problem_identification",
|
||||
"previous_queries": ["stock market trends", "investment analysis"],
|
||||
"context_coherence": 0.94,
|
||||
"topic_consistency": 0.89
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🔍 **Context Detection Algorithms**
|
||||
|
||||
### **Semantic Context Extraction**
|
||||
|
||||
```python
|
||||
def extract_semantic_context(query, conversation_history=None):
|
||||
"""Extract semantic context from query and conversation"""
|
||||
|
||||
context = {
|
||||
'entities': extract_named_entities(query),
|
||||
'concepts': extract_key_concepts(query),
|
||||
'relationships': extract_entity_relationships(query),
|
||||
'sentiment': analyze_sentiment(query),
|
||||
'urgency': detect_urgency(query)
|
||||
}
|
||||
|
||||
# Analyze conversation history if available
|
||||
if conversation_history:
|
||||
context['conversation_coherence'] = analyze_coherence(
|
||||
query, conversation_history
|
||||
)
|
||||
context['topic_evolution'] = track_topic_evolution(
|
||||
conversation_history
|
||||
)
|
||||
|
||||
return context
|
||||
|
||||
def extract_named_entities(query):
|
||||
"""Extract named entities from query"""
|
||||
entities = {
|
||||
'organizations': [],
|
||||
'locations': [],
|
||||
'persons': [],
|
||||
'products': [],
|
||||
'technical_terms': []
|
||||
}
|
||||
|
||||
# Use NLP library or pattern matching
|
||||
# Implementation depends on available tools
|
||||
|
||||
return entities
|
||||
|
||||
def extract_key_concepts(query):
|
||||
"""Extract key concepts and topics"""
|
||||
concepts = {
|
||||
'primary_domain': identify_primary_domain(query),
|
||||
'secondary_domains': identify_secondary_domains(query),
|
||||
'technical_concepts': extract_technical_terms(query),
|
||||
'business_concepts': extract_business_terms(query)
|
||||
}
|
||||
|
||||
return concepts
|
||||
```
|
||||
|
||||
### **Context Relevance Scoring**
|
||||
|
||||
```python
|
||||
def calculate_context_relevance(query, skill_config, extracted_context):
|
||||
"""Calculate how relevant the query context is to the skill"""
|
||||
|
||||
relevance_scores = {}
|
||||
|
||||
# Domain relevance
|
||||
relevance_scores['domain'] = calculate_domain_relevance(
|
||||
skill_config['expected_domains'],
|
||||
extracted_context['concepts']['primary_domain']
|
||||
)
|
||||
|
||||
# Task relevance
|
||||
relevance_scores['task'] = calculate_task_relevance(
|
||||
skill_config['supported_tasks'],
|
||||
extracted_context['intent_context']['primary_intent']
|
||||
)
|
||||
|
||||
# Capability relevance
|
||||
relevance_scores['capability'] = calculate_capability_relevance(
|
||||
skill_config['capabilities'],
|
||||
extracted_context['required_capabilities']
|
||||
)
|
||||
|
||||
# Context coherence
|
||||
relevance_scores['coherence'] = extracted_context.get(
|
||||
'conversation_coherence', 0.5
|
||||
)
|
||||
|
||||
# Calculate weighted overall relevance
|
||||
weights = {
|
||||
'domain': 0.3,
|
||||
'task': 0.25,
|
||||
'capability': 0.25,
|
||||
'coherence': 0.2
|
||||
}
|
||||
|
||||
overall_relevance = sum(
|
||||
score * weights[category]
|
||||
for category, score in relevance_scores.items()
|
||||
)
|
||||
|
||||
return {
|
||||
'overall_relevance': overall_relevance,
|
||||
'category_scores': relevance_scores,
|
||||
'recommendation': evaluate_relevance_threshold(overall_relevance)
|
||||
}
|
||||
|
||||
def evaluate_relevance_threshold(relevance_score):
|
||||
"""Determine activation recommendation based on relevance"""
|
||||
|
||||
if relevance_score >= 0.9:
|
||||
return {'activate': True, 'confidence': 'high', 'reason': 'Strong context match'}
|
||||
elif relevance_score >= 0.7:
|
||||
return {'activate': True, 'confidence': 'medium', 'reason': 'Good context match'}
|
||||
elif relevance_score >= 0.5:
|
||||
return {'activate': False, 'confidence': 'low', 'reason': 'Weak context match'}
|
||||
else:
|
||||
return {'activate': False, 'confidence': 'very_low', 'reason': 'Poor context match'}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🚫 **Context Filtering System**
|
||||
|
||||
### **Negative Context Detection**
|
||||
|
||||
```python
|
||||
def detect_negative_context(query, skill_config):
|
||||
"""Detect contexts where skill should NOT activate"""
|
||||
|
||||
negative_indicators = {
|
||||
'excluded_domains': [],
|
||||
'conflicting_intents': [],
|
||||
'inappropriate_contexts': [],
|
||||
'resource_constraints': []
|
||||
}
|
||||
|
||||
# Check for excluded domains
|
||||
excluded_domains = skill_config.get('contextual_filters', {}).get('excluded_domains', [])
|
||||
query_domains = identify_query_domains(query)
|
||||
|
||||
for domain in query_domains:
|
||||
if domain in excluded_domains:
|
||||
negative_indicators['excluded_domains'].append({
|
||||
'domain': domain,
|
||||
'reason': f'Domain "{domain}" is explicitly excluded'
|
||||
})
|
||||
|
||||
# Check for conflicting intents
|
||||
conflicting_intents = identify_conflicting_intents(query, skill_config)
|
||||
negative_indicators['conflicting_intents'] = conflicting_intents
|
||||
|
||||
# Check for inappropriate contexts
|
||||
inappropriate_contexts = check_context_appropriateness(query, skill_config)
|
||||
negative_indicators['inappropriate_contexts'] = inappropriate_contexts
|
||||
|
||||
# Calculate negative score
|
||||
negative_score = calculate_negative_score(negative_indicators)
|
||||
|
||||
return {
|
||||
'should_block': negative_score > 0.7,
|
||||
'negative_score': negative_score,
|
||||
'indicators': negative_indicators,
|
||||
'recommendation': generate_block_recommendation(negative_score)
|
||||
}
|
||||
|
||||
def check_context_appropriateness(query, skill_config):
|
||||
"""Check if query context is appropriate for skill activation"""
|
||||
|
||||
inappropriate = []
|
||||
|
||||
# Check if user is asking for help with existing tools
|
||||
if any(phrase in query.lower() for phrase in [
|
||||
'how to use', 'help with', 'tutorial', 'guide', 'explain'
|
||||
]):
|
||||
if 'tutorial' not in skill_config.get('capabilities', {}):
|
||||
inappropriate.append({
|
||||
'type': 'help_request',
|
||||
'reason': 'User requesting help, not task execution'
|
||||
})
|
||||
|
||||
# Check if user is asking about theory or education
|
||||
if any(phrase in query.lower() for phrase in [
|
||||
'what is', 'explain', 'define', 'theory', 'concept', 'learn about'
|
||||
]):
|
||||
if 'educational' not in skill_config.get('capabilities', {}):
|
||||
inappropriate.append({
|
||||
'type': 'educational_query',
|
||||
'reason': 'User asking for education, not task execution'
|
||||
})
|
||||
|
||||
# Check if user is trying to debug or troubleshoot
|
||||
if any(phrase in query.lower() for phrase in [
|
||||
'debug', 'error', 'problem', 'issue', 'fix', 'troubleshoot'
|
||||
]):
|
||||
if 'debugging' not in skill_config.get('capabilities', {}):
|
||||
inappropriate.append({
|
||||
'type': 'debugging_query',
|
||||
'reason': 'User asking for debugging help'
|
||||
})
|
||||
|
||||
return inappropriate
|
||||
```
|
||||
|
||||
### **Context-Aware Decision Engine**
|
||||
|
||||
```python
|
||||
def make_context_aware_decision(query, skill_config, conversation_history=None):
|
||||
"""Make final activation decision considering all context factors"""
|
||||
|
||||
# Extract context
|
||||
context = extract_semantic_context(query, conversation_history)
|
||||
|
||||
# Calculate relevance
|
||||
relevance = calculate_context_relevance(query, skill_config, context)
|
||||
|
||||
# Check for negative indicators
|
||||
negative_context = detect_negative_context(query, skill_config)
|
||||
|
||||
# Get confidence threshold from skill config
|
||||
confidence_threshold = skill_config.get(
|
||||
'contextual_filters', {}
|
||||
).get('confidence_threshold', 0.7)
|
||||
|
||||
# Make decision
|
||||
should_activate = True
|
||||
decision_reasons = []
|
||||
|
||||
# Check negative context first (blocking condition)
|
||||
if negative_context['should_block']:
|
||||
should_activate = False
|
||||
decision_reasons.append(f"Blocked: {negative_context['recommendation']['reason']}")
|
||||
|
||||
# Check relevance threshold
|
||||
elif relevance['overall_relevance'] < confidence_threshold:
|
||||
should_activate = False
|
||||
decision_reasons.append(f"Low relevance: {relevance['overall_relevance']:.2f} < {confidence_threshold}")
|
||||
|
||||
# Check confidence level
|
||||
elif relevance['recommendation']['confidence'] == 'low':
|
||||
should_activate = False
|
||||
decision_reasons.append(f"Low confidence: {relevance['recommendation']['reason']}")
|
||||
|
||||
# If passing all checks, recommend activation
|
||||
else:
|
||||
decision_reasons.append(f"Approved: {relevance['recommendation']['reason']}")
|
||||
|
||||
return {
|
||||
'should_activate': should_activate,
|
||||
'confidence': relevance['recommendation']['confidence'],
|
||||
'relevance_score': relevance['overall_relevance'],
|
||||
'negative_score': negative_context['negative_score'],
|
||||
'decision_reasons': decision_reasons,
|
||||
'context_analysis': {
|
||||
'relevance': relevance,
|
||||
'negative_context': negative_context,
|
||||
'extracted_context': context
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 📋 **Enhanced Marketplace Configuration**
|
||||
|
||||
### **Context-Aware Configuration Structure**
|
||||
|
||||
```json
|
||||
{
|
||||
"name": "skill-name",
|
||||
"activation": {
|
||||
"keywords": [...],
|
||||
"patterns": [...],
|
||||
|
||||
"_comment": "NEW: Context-aware filtering",
|
||||
"contextual_filters": {
|
||||
"required_context": {
|
||||
"domains": ["finance", "trading", "investment"],
|
||||
"tasks": ["analysis", "calculation", "comparison"],
|
||||
"entities": ["stock", "ticker", "market"],
|
||||
"confidence_threshold": 0.8
|
||||
},
|
||||
|
||||
"excluded_context": {
|
||||
"domains": ["healthcare", "education", "entertainment"],
|
||||
"tasks": ["tutorial", "help", "debugging"],
|
||||
"query_types": ["question", "definition", "explanation"],
|
||||
"user_states": ["learning", "exploring"]
|
||||
},
|
||||
|
||||
"context_weights": {
|
||||
"domain_relevance": 0.35,
|
||||
"task_relevance": 0.30,
|
||||
"intent_strength": 0.20,
|
||||
"conversation_coherence": 0.15
|
||||
},
|
||||
|
||||
"activation_rules": {
|
||||
"min_relevance_score": 0.75,
|
||||
"max_negative_score": 0.3,
|
||||
"required_coherence": 0.6,
|
||||
"context_consistency_check": true
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
"capabilities": {
|
||||
"technical_analysis": true,
|
||||
"data_processing": true,
|
||||
"_comment": "NEW: Context capabilities",
|
||||
"context_requirements": {
|
||||
"min_confidence": 0.8,
|
||||
"required_domains": ["finance"],
|
||||
"supported_tasks": ["analysis", "calculation"]
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🧪 **Context Testing Framework**
|
||||
|
||||
### **Context Test Generation**
|
||||
|
||||
```python
|
||||
def generate_context_test_cases(skill_config):
|
||||
"""Generate test cases for context-aware activation"""
|
||||
|
||||
test_cases = []
|
||||
|
||||
# Positive context tests (should activate)
|
||||
positive_contexts = [
|
||||
{
|
||||
'query': 'Analyze AAPL stock using RSI indicator',
|
||||
'context': {'domain': 'finance', 'task': 'analysis', 'intent': 'analyze'},
|
||||
'expected': True,
|
||||
'reason': 'Perfect domain and task match'
|
||||
},
|
||||
{
|
||||
'query': 'I need to compare MSFT vs GOOGL performance',
|
||||
'context': {'domain': 'finance', 'task': 'comparison', 'intent': 'compare'},
|
||||
'expected': True,
|
||||
'reason': 'Domain match with supported task'
|
||||
}
|
||||
]
|
||||
|
||||
# Negative context tests (should NOT activate)
|
||||
negative_contexts = [
|
||||
{
|
||||
'query': 'Explain what stock analysis is',
|
||||
'context': {'domain': 'education', 'task': 'explanation', 'intent': 'learn'},
|
||||
'expected': False,
|
||||
'reason': 'Educational context, not task execution'
|
||||
},
|
||||
{
|
||||
'query': 'How to use the stock analyzer tool',
|
||||
'context': {'domain': 'help', 'task': 'tutorial', 'intent': 'learn'},
|
||||
'expected': False,
|
||||
'reason': 'Tutorial request, not analysis task'
|
||||
},
|
||||
{
|
||||
'query': 'Debug my stock analysis code',
|
||||
'context': {'domain': 'programming', 'task': 'debugging', 'intent': 'fix'},
|
||||
'expected': False,
|
||||
'reason': 'Debugging context, not supported capability'
|
||||
}
|
||||
]
|
||||
|
||||
# Edge case tests
|
||||
edge_cases = [
|
||||
{
|
||||
'query': 'Stock market trends for healthcare companies',
|
||||
'context': {'domain': 'finance', 'subdomain': 'healthcare', 'task': 'analysis'},
|
||||
'expected': True,
|
||||
'reason': 'Finance domain with healthcare subdomain - should activate'
|
||||
},
|
||||
{
|
||||
'query': 'Teach me about technical analysis',
|
||||
'context': {'domain': 'education', 'topic': 'technical_analysis'},
|
||||
'expected': False,
|
||||
'reason': 'Educational context despite relevant topic'
|
||||
}
|
||||
]
|
||||
|
||||
test_cases.extend(positive_contexts)
|
||||
test_cases.extend(negative_contexts)
|
||||
test_cases.extend(edge_cases)
|
||||
|
||||
return test_cases
|
||||
|
||||
def run_context_aware_tests(skill_config, test_cases):
|
||||
"""Run context-aware activation tests"""
|
||||
|
||||
results = []
|
||||
|
||||
for i, test_case in enumerate(test_cases):
|
||||
query = test_case['query']
|
||||
expected = test_case['expected']
|
||||
reason = test_case['reason']
|
||||
|
||||
# Simulate context analysis
|
||||
decision = make_context_aware_decision(query, skill_config)
|
||||
|
||||
result = {
|
||||
'test_id': i + 1,
|
||||
'query': query,
|
||||
'expected': expected,
|
||||
'actual': decision['should_activate'],
|
||||
'correct': expected == decision['should_activate'],
|
||||
'confidence': decision['confidence'],
|
||||
'relevance_score': decision['relevance_score'],
|
||||
'decision_reasons': decision['decision_reasons'],
|
||||
'test_reason': reason
|
||||
}
|
||||
|
||||
results.append(result)
|
||||
|
||||
# Log result
|
||||
status = "✅" if result['correct'] else "❌"
|
||||
print(f"{status} Test {i+1}: {query}")
|
||||
if not result['correct']:
|
||||
print(f" Expected: {expected}, Got: {decision['should_activate']}")
|
||||
print(f" Reasons: {'; '.join(decision['decision_reasons'])}")
|
||||
|
||||
# Calculate metrics
|
||||
total_tests = len(results)
|
||||
correct_tests = sum(1 for r in results if r['correct'])
|
||||
accuracy = correct_tests / total_tests if total_tests > 0 else 0
|
||||
|
||||
return {
|
||||
'total_tests': total_tests,
|
||||
'correct_tests': correct_tests,
|
||||
'accuracy': accuracy,
|
||||
'results': results
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 📊 **Performance Monitoring**
|
||||
|
||||
### **Context-Aware Metrics**
|
||||
|
||||
```python
|
||||
class ContextAwareMonitor:
|
||||
"""Monitor context-aware activation performance"""
|
||||
|
||||
def __init__(self):
|
||||
self.metrics = {
|
||||
'total_queries': 0,
|
||||
'context_filtered': 0,
|
||||
'false_positives_prevented': 0,
|
||||
'context_analysis_time': [],
|
||||
'relevance_scores': [],
|
||||
'negative_contexts_detected': []
|
||||
}
|
||||
|
||||
def log_context_decision(self, query, decision, actual_outcome=None):
|
||||
"""Log context-aware activation decision"""
|
||||
|
||||
self.metrics['total_queries'] += 1
|
||||
|
||||
# Track context filtering
|
||||
if not decision['should_activate'] and decision['relevance_score'] > 0.5:
|
||||
self.metrics['context_filtered'] += 1
|
||||
|
||||
# Track prevented false positives (if we have feedback)
|
||||
if actual_outcome == 'false_positive_prevented':
|
||||
self.metrics['false_positives_prevented'] += 1
|
||||
|
||||
# Track relevance scores
|
||||
self.metrics['relevance_scores'].append(decision['relevance_score'])
|
||||
|
||||
# Track negative contexts
|
||||
if decision['negative_score'] > 0.5:
|
||||
self.metrics['negative_contexts_detected'].append({
|
||||
'query': query,
|
||||
'negative_score': decision['negative_score'],
|
||||
'reasons': decision['decision_reasons']
|
||||
})
|
||||
|
||||
def generate_performance_report(self):
|
||||
"""Generate context-aware performance report"""
|
||||
|
||||
total = self.metrics['total_queries']
|
||||
if total == 0:
|
||||
return "No data available"
|
||||
|
||||
context_filter_rate = self.metrics['context_filtered'] / total
|
||||
avg_relevance = sum(self.metrics['relevance_scores']) / len(self.metrics['relevance_scores'])
|
||||
|
||||
report = f"""
|
||||
Context-Aware Performance Report
|
||||
================================
|
||||
|
||||
Total Queries Analyzed: {total}
|
||||
Queries Filtered by Context: {self.metrics['context_filtered']} ({context_filter_rate:.1%})
|
||||
False Positives Prevented: {self.metrics['false_positives_prevented']}
|
||||
Average Relevance Score: {avg_relevance:.3f}
|
||||
|
||||
Top Negative Context Categories:
|
||||
"""
|
||||
|
||||
# Analyze negative contexts
|
||||
negative_reasons = {}
|
||||
for context in self.metrics['negative_contexts_detected']:
|
||||
for reason in context['reasons']:
|
||||
negative_reasons[reason] = negative_reasons.get(reason, 0) + 1
|
||||
|
||||
for reason, count in sorted(negative_reasons.items(), key=lambda x: x[1], reverse=True)[:5]:
|
||||
report += f" - {reason}: {count}\n"
|
||||
|
||||
return report
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 🔄 **Integration with Existing System**
|
||||
|
||||
### **Enhanced 3-Layer Activation**
|
||||
|
||||
```python
|
||||
def enhanced_three_layer_activation(query, skill_config, conversation_history=None):
|
||||
"""Enhanced 3-layer activation with context awareness"""
|
||||
|
||||
# Layer 1: Keyword matching (existing)
|
||||
keyword_match = check_keyword_matching(query, skill_config['activation']['keywords'])
|
||||
|
||||
# Layer 2: Pattern matching (existing)
|
||||
pattern_match = check_pattern_matching(query, skill_config['activation']['patterns'])
|
||||
|
||||
# Layer 3: Description understanding (existing)
|
||||
description_match = check_description_relevance(query, skill_config)
|
||||
|
||||
# NEW: Layer 4: Context-aware filtering
|
||||
context_decision = make_context_aware_decision(query, skill_config, conversation_history)
|
||||
|
||||
# Make final decision
|
||||
base_match = keyword_match or pattern_match or description_match
|
||||
|
||||
if not base_match:
|
||||
return {
|
||||
'should_activate': False,
|
||||
'reason': 'No base layer match',
|
||||
'layers_matched': [],
|
||||
'context_filtered': False
|
||||
}
|
||||
|
||||
if not context_decision['should_activate']:
|
||||
return {
|
||||
'should_activate': False,
|
||||
'reason': f'Context filtered: {"; ".join(context_decision["decision_reasons"])}',
|
||||
'layers_matched': get_matched_layers(keyword_match, pattern_match, description_match),
|
||||
'context_filtered': True,
|
||||
'context_score': context_decision['relevance_score']
|
||||
}
|
||||
|
||||
return {
|
||||
'should_activate': True,
|
||||
'reason': f'Approved: {context_decision["recommendation"]["reason"]}',
|
||||
'layers_matched': get_matched_layers(keyword_match, pattern_match, description_match),
|
||||
'context_filtered': False,
|
||||
'context_score': context_decision['relevance_score'],
|
||||
'confidence': context_decision['confidence']
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## ✅ **Implementation Checklist**
|
||||
|
||||
### **Configuration Requirements**
|
||||
- [ ] Add `contextual_filters` section to marketplace.json
|
||||
- [ ] Define `required_context` domains and tasks
|
||||
- [ ] Define `excluded_context` for false positive prevention
|
||||
- [ ] Set appropriate `confidence_threshold`
|
||||
- [ ] Configure `context_weights` for domain-specific needs
|
||||
|
||||
### **Testing Requirements**
|
||||
- [ ] Generate context test cases for each skill
|
||||
- [ ] Test positive context scenarios
|
||||
- [ ] Test negative context scenarios
|
||||
- [ ] Validate edge cases and boundary conditions
|
||||
- [ ] Monitor false positive reduction
|
||||
|
||||
### **Performance Requirements**
|
||||
- [ ] Context analysis time < 100ms
|
||||
- [ ] Relevance calculation accuracy > 90%
|
||||
- [ ] False positive reduction > 50%
|
||||
- [ ] No negative impact on true positive rate
|
||||
|
||||
---
|
||||
|
||||
## 📈 **Expected Outcomes**
|
||||
|
||||
### **Performance Improvements**
|
||||
- **False Positive Rate**: 2% → **<1%**
|
||||
- **Context Precision**: 60% → **85%**
|
||||
- **User Satisfaction**: 85% → **95%**
|
||||
- **Activation Reliability**: 98% → **99.5%**
|
||||
|
||||
### **User Experience Benefits**
|
||||
- Skills activate only in appropriate contexts
|
||||
- Reduced confusion and frustration
|
||||
- More predictable and reliable behavior
|
||||
- Better understanding of skill capabilities
|
||||
|
||||
---
|
||||
|
||||
**Version:** 1.0
|
||||
**Last Updated:** 2025-10-24
|
||||
**Maintained By:** Agent-Skill-Creator Team
|
||||
Reference in New Issue
Block a user