meta.agent - Agent Creator
The meta-agent that creates other agents through skill composition.
Overview
meta.agent transforms natural language descriptions into complete, functional agents with proper skill composition, artifact metadata, and documentation.
What it produces:
- Complete
agent.yamlwith recommended skills - Auto-generated
README.mddocumentation - Proper artifact metadata (produces/consumes)
- Inferred permissions from skills
Quick Start
1. Create an Agent Description
Create a Markdown file describing your agent:
# Name: api.architect
# Purpose:
An agent that designs comprehensive REST APIs and validates them
against best practices.
# Inputs:
- API requirements
# Outputs:
- openapi-spec
- validation-report
- api-models
# Examples:
- Design a RESTful API for an e-commerce platform
- Create an API for a task management system
2. Run meta.agent
python3 agents/meta.agent/meta_agent.py examples/api_architect_description.md
3. Output
✨ Agent 'api.architect' created successfully!
📄 Agent definition: agents/api.architect/agent.yaml
📖 Documentation: agents/api.architect/README.md
🔧 Skills: api.define, api.validate, workflow.validate
Usage
Basic Creation
# Create agent from Markdown description
python3 agents/meta.agent/meta_agent.py path/to/agent_description.md
# Create agent from JSON description
python3 agents/meta.agent/meta_agent.py path/to/agent_description.json
# Specify output directory
python3 agents/meta.agent/meta_agent.py description.md -o agents/my-agent
# Skip validation
python3 agents/meta.agent/meta_agent.py description.md --no-validate
Description Format
Markdown Format:
# Name: agent-name
# Purpose:
Detailed description of what the agent does...
# Inputs:
- artifact-type-1
- artifact-type-2
# Outputs:
- artifact-type-3
- artifact-type-4
# Constraints:
(Optional) Any constraints or requirements...
# Examples:
- Example use case 1
- Example use case 2
JSON Format:
{
"name": "agent-name",
"purpose": "Detailed description...",
"inputs": ["artifact-type-1", "artifact-type-2"],
"outputs": ["artifact-type-3", "artifact-type-4"],
"examples": ["Example 1", "Example 2"]
}
What meta.agent Creates
1. agent.yaml
Complete agent definition with:
- Recommended skills - Uses
agent.composeto find compatible skills - Artifact metadata - Proper produces/consumes declarations
- Permissions - Inferred from selected skills
- Description - Professional formatting
Example output:
name: api.architect
description: Designs and validates REST APIs against best practices
skills_available:
- api.define
- api.validate
permissions:
- filesystem:read
- filesystem:write
artifact_metadata:
consumes:
- type: api-requirements
produces:
- type: openapi-spec
schema: schemas/openapi-spec.json
- type: validation-report
schema: schemas/validation-report.json
2. README.md
Auto-generated documentation with:
- Agent purpose and capabilities
- Skills used with rationale
- Artifact flow (inputs/outputs)
- Example use cases
- Usage instructions
- "Created by meta.agent" attribution
How It Works
- Parse Description - Reads Markdown or JSON
- Find Skills - Uses
agent.composeto recommend compatible skills - Generate Metadata - Uses
artifact.definefor artifact contracts - Infer Permissions - Analyzes required skills
- Create Files - Generates agent.yaml and README.md
- Validate - Ensures proper structure and compatibility
Integration with Other Meta-Agents
With meta.compatibility
After creating an agent, use meta.compatibility to analyze it:
# Create agent
python3 agents/meta.agent/meta_agent.py description.md
# Analyze compatibility
python3 agents/meta.compatibility/meta_compatibility.py analyze api.architect
With meta.suggest
Get suggestions after creating an agent:
python3 agents/meta.suggest/meta_suggest.py \
--context meta.agent \
--artifacts agents/api.architect/agent.yaml
Common Workflows
Workflow 1: Create and Analyze
# Step 1: Create agent
python3 agents/meta.agent/meta_agent.py examples/my_agent.md
# Step 2: Analyze compatibility
python3 agents/meta.compatibility/meta_compatibility.py find-compatible my-agent
# Step 3: Test the agent
# (Manual testing or agent.run)
Workflow 2: Create Multiple Agents
# Create several agents
for desc in examples/*_agent_description.md; do
python3 agents/meta.agent/meta_agent.py "$desc"
done
# Analyze the ecosystem
python3 agents/meta.compatibility/meta_compatibility.py list-all
Artifact Types
Consumes
- agent-description - Natural language agent requirements
- Format: Markdown or JSON
- Pattern:
**/agent_description.md
Produces
-
agent-definition - Complete agent.yaml
- Format: YAML
- Pattern:
agents/*/agent.yaml - Schema:
schemas/agent-definition.json
-
agent-documentation - Auto-generated README
- Format: Markdown
- Pattern:
agents/*/README.md
Tips & Best Practices
Writing Good Descriptions
✅ Good:
- Clear, specific purpose
- Well-defined inputs and outputs
- Concrete examples
- Specific artifact types
❌ Avoid:
- Vague purpose ("does stuff")
- Generic inputs ("data")
- No examples
- Unclear artifact types
Choosing Artifact Types
Use existing artifact types when possible:
openapi-specfor API specificationsvalidation-reportfor validation resultsworkflow-definitionfor workflows
If you need a new type, create it with meta.artifact first.
Skill Selection
meta.agent uses keyword matching to find skills:
- "api" → finds api.define, api.validate
- "validate" → finds validation skills
- "agent" → finds agent.compose, meta.agent
Be descriptive in your purpose statement to get better skill recommendations.
Troubleshooting
Agent name conflicts
Error: Agent 'api.architect' already exists
Solution: Choose a different name or remove the existing agent directory.
No skills recommended
Warning: No skills found for agent purpose
Solutions:
- Make purpose more specific
- Mention artifact types explicitly
- Check if relevant skills exist in registry
Missing artifact types
Warning: Artifact type 'my-artifact' not in known registry
Solution: Create the artifact type with meta.artifact first:
python3 agents/meta.artifact/meta_artifact.py create artifact_description.md
Examples
See examples/ directory for sample agent descriptions:
api_architect_description.md- API design and validation agent- (Add more as you create them)
Architecture
meta.agent is part of the meta-agent ecosystem:
meta.agent
├─ Uses: agent.compose (find skills)
├─ Uses: artifact.define (generate metadata)
├─ Produces: agent.yaml + README.md
└─ Works with: meta.compatibility, meta.suggest
Related Documentation
- META_AGENTS.md - Complete meta-agent architecture
- ARTIFACT_STANDARDS.md - Artifact system
- agent-description schema - JSON schema
Created By
Part of the Betty Framework meta-agent ecosystem.