#!/usr/bin/env python3 """ data.transform - Transform data between different formats (JSON, YAML, XML, CSV) with validation and error handling Generated by meta.skill """ import os import sys import json import yaml from pathlib import Path from typing import Dict, List, Any, Optional from betty.config import BASE_DIR from betty.logging_utils import setup_logger logger = setup_logger(__name__) class DataTransform: """ Transform data between different formats (JSON, YAML, XML, CSV) with validation and error handling """ def __init__(self, base_dir: str = BASE_DIR): """Initialize skill""" self.base_dir = Path(base_dir) def execute(self, input_file_path: Optional[str] = None, source_format: Optional[str] = None, target_format: Optional[str] = None, schema_path_optional: Optional[str] = None) -> Dict[str, Any]: """ Execute the skill Returns: Dict with execution results """ try: logger.info("Executing data.transform...") # TODO: Implement skill logic here # Implementation notes: # Support transformations between: - JSON ↔ YAML - JSON ↔ XML - JSON ↔ CSV - YAML ↔ XML - XML ↔ CSV Features: - Validate input against schema before transformation - Preserve data types during conversion - Handle nested structures appropriately - Report data loss warnings (e.g., CSV can't represent nesting) - Support custom transformation rules - Provide detailed error messages Output report should include: - Transformation success status - Source and target formats - Data validation results - Warnings about potential data loss - Transformation time and file sizes # Placeholder implementation result = { "ok": True, "status": "success", "message": "Skill executed successfully" } logger.info("Skill completed successfully") return result except Exception as e: logger.error(f"Error executing skill: {e}") return { "ok": False, "status": "failed", "error": str(e) } def main(): """CLI entry point""" import argparse parser = argparse.ArgumentParser( description="Transform data between different formats (JSON, YAML, XML, CSV) with validation and error handling" ) parser.add_argument( "--input-file-path", help="input_file_path" ) parser.add_argument( "--source-format", help="source_format" ) parser.add_argument( "--target-format", help="target_format" ) parser.add_argument( "--schema-path-optional", help="schema_path (optional)" ) parser.add_argument( "--output-format", choices=["json", "yaml"], default="json", help="Output format" ) args = parser.parse_args() # Create skill instance skill = DataTransform() # Execute skill result = skill.execute( input_file_path=args.input_file_path, source_format=args.source_format, target_format=args.target_format, schema_path_optional=args.schema_path_optional, ) # Output result if args.output_format == "json": print(json.dumps(result, indent=2)) else: print(yaml.dump(result, default_flow_style=False)) # Exit with appropriate code sys.exit(0 if result.get("ok") else 1) if __name__ == "__main__": main()