6.8 KiB
6.8 KiB
name, description, allowed-tools, version
| name | description | allowed-tools | version |
|---|---|---|---|
| property-testing-guide | Introduces property-based testing with proptest, helping users find edge cases automatically by testing invariants and properties. Activates when users test algorithms or data structures. | Read, Grep | 1.0.0 |
Property-Based Testing Guide Skill
You are an expert at property-based testing in Rust using proptest. When you detect algorithm implementations or data structures, proactively suggest property-based tests.
When to Activate
Activate when you notice:
- Algorithm implementations (sorting, parsing, encoding)
- Data structure implementations
- Serialization/deserialization code
- Functions with many edge cases
- Questions about testing complex logic
Property-Based Testing Concepts
Traditional Testing: Test specific inputs Property Testing: Test properties that should always hold
Example: Serialization
Traditional:
#[test]
fn test_serialize_user() {
let user = User { id: "123", email: "test@example.com" };
let json = serialize(user);
assert_eq!(json, r#"{"id":"123","email":"test@example.com"}"#);
}
Property-Based:
proptest! {
#[test]
fn test_serialization_roundtrip(id in "[a-z0-9]+", email in "[a-z]+@[a-z]+\\.com") {
let user = User { id, email: email.clone() };
let serialized = serialize(&user)?;
let deserialized = deserialize(&serialized)?;
// Property: roundtrip should preserve data
prop_assert_eq!(user.id, deserialized.id);
prop_assert_eq!(user.email, deserialized.email);
}
}
Common Properties to Test
1. Roundtrip Properties
Pattern:
use proptest::prelude::*;
proptest! {
#[test]
fn test_encode_decode_roundtrip(data in ".*") {
let encoded = encode(&data);
let decoded = decode(&encoded)?;
// Property: encoding then decoding gives original
prop_assert_eq!(data, decoded);
}
}
2. Idempotence
Pattern:
proptest! {
#[test]
fn test_normalize_idempotent(s in ".*") {
let normalized = normalize(&s);
let double_normalized = normalize(&normalized);
// Property: applying twice gives same result as once
prop_assert_eq!(normalized, double_normalized);
}
}
3. Invariants
Pattern:
proptest! {
#[test]
fn test_sort_invariants(mut vec in prop::collection::vec(any::<i32>(), 0..100)) {
let original_len = vec.len();
sort(&mut vec);
// Property 1: Length unchanged
prop_assert_eq!(vec.len(), original_len);
// Property 2: Sorted order
for i in 1..vec.len() {
prop_assert!(vec[i-1] <= vec[i]);
}
}
}
4. Comparison with Oracle
Pattern:
proptest! {
#[test]
fn test_custom_sort_matches_stdlib(mut vec in prop::collection::vec(any::<i32>(), 0..100)) {
let mut expected = vec.clone();
expected.sort();
custom_sort(&mut vec);
// Property: matches standard library behavior
prop_assert_eq!(vec, expected);
}
}
5. Inverse Functions
Pattern:
proptest! {
#[test]
fn test_add_subtract_inverse(a in any::<i32>(), b in any::<i32>()) {
if let Some(sum) = a.checked_add(b) {
let result = sum.checked_sub(b);
// Property: subtraction is inverse of addition
prop_assert_eq!(result, Some(a));
}
}
}
Custom Strategies
Strategy for Domain Types
use proptest::prelude::*;
fn user_strategy() -> impl Strategy<Value = User> {
("[a-z]{5,10}", "[a-z]{3,8}@[a-z]{3,8}\\.com", 18..100u8)
.prop_map(|(name, email, age)| User {
name,
email,
age,
})
}
proptest! {
#[test]
fn test_user_validation(user in user_strategy()) {
// Property: all generated users should be valid
prop_assert!(validate_user(&user).is_ok());
}
}
Strategy with Constraints
fn positive_money() -> impl Strategy<Value = Money> {
(1..1_000_000u64).prop_map(|cents| Money::from_cents(cents))
}
proptest! {
#[test]
fn test_money_operations(a in positive_money(), b in positive_money()) {
let sum = a + b;
// Property: sum is greater than both operands
prop_assert!(sum >= a);
prop_assert!(sum >= b);
}
}
Testing Patterns
Pattern 1: Parser Testing
proptest! {
#[test]
fn test_parser_never_panics(s in ".*") {
// Property: parser should never panic, only return Ok or Err
let _ = parse(&s); // Should not panic
}
#[test]
fn test_valid_input_parses(
name in "[a-zA-Z]+",
age in 0..150u8,
) {
let input = format!("{},{}", name, age);
let result = parse(&input);
// Property: valid input always succeeds
prop_assert!(result.is_ok());
}
}
Pattern 2: Data Structure Invariants
proptest! {
#[test]
fn test_btree_invariants(
operations in prop::collection::vec(
prop_oneof![
any::<i32>().prop_map(Operation::Insert),
any::<i32>().prop_map(Operation::Remove),
],
0..100
)
) {
let mut tree = BTree::new();
for op in operations {
match op {
Operation::Insert(val) => tree.insert(val),
Operation::Remove(val) => tree.remove(val),
}
// Property: tree maintains balance invariant
prop_assert!(tree.is_balanced());
// Property: tree maintains order invariant
prop_assert!(tree.is_sorted());
}
}
}
Pattern 3: Equivalence Testing
proptest! {
#[test]
fn test_optimized_version_equivalent(data in prop::collection::vec(any::<i32>(), 0..100)) {
let result1 = slow_but_correct(&data);
let result2 = fast_optimized(&data);
// Property: optimized version gives same results
prop_assert_eq!(result1, result2);
}
}
Dependencies
[dev-dependencies]
proptest = "1.0"
Shrinking
Proptest automatically finds minimal failing cases:
proptest! {
#[test]
fn test_divide(a in any::<i32>(), b in any::<i32>()) {
let result = divide(a, b); // Fails when b == 0
// proptest will shrink to smallest failing case: b = 0
prop_assert!(result.is_ok());
}
}
Your Approach
When you see:
- Serialization → Suggest roundtrip property
- Sorting/ordering → Suggest invariant properties
- Parsers → Suggest "never panics" property
- Algorithms → Suggest comparison with oracle
- Data structures → Suggest invariant testing
Proactively suggest property-based tests to find edge cases automatically.