Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:24:55 +08:00
commit bb9b688c76
8 changed files with 2098 additions and 0 deletions

View File

@@ -0,0 +1,693 @@
# Enterprise Angular Patterns
Proven architectural patterns for building scalable Angular applications in enterprise environments with teams of 5-100+ developers.
---
## Core Principles
1. **Separation of Concerns** - Each piece of code has one responsibility
2. **Single Source of Truth** - State lives in one place
3. **Consistency** - Follow patterns religiously
4. **Scalability** - Design for 10x growth
5. **Maintainability** - Code should be easy to change
---
## Pattern 1: Core-Shared-Features Structure
### Overview
Organize code into three main categories based on scope and reusability.
### The Three Folders
```
src/app/
├── core/ # App-wide singletons (loaded once)
├── shared/ # Reusable components/utilities
└── features/ # Feature modules (lazy loaded)
```
### Core Module Rules
**What belongs in core:**
- ✅ Singleton services (AuthService, ApiService, CacheService)
- ✅ HTTP interceptors (auth, error handling, retry)
- ✅ Route guards (authentication, authorization)
- ✅ Global error handlers
- ✅ App-wide models and interfaces
- ✅ Constants and configuration
**What does NOT belong:**
- ❌ UI components
- ❌ Feature-specific services
- ❌ Reusable utilities (those go in shared)
**Example:**
```typescript
// core/services/auth.service.ts
@Injectable({ providedIn: 'root' })
export class AuthService {
private currentUser$ = new BehaviorSubject<User | null>(null);
login(credentials: Credentials): Observable<User> {
return this.http.post<User>('/api/auth/login', credentials).pipe(
tap(user => this.currentUser$.next(user))
);
}
getCurrentUser(): Observable<User | null> {
return this.currentUser$.asObservable();
}
}
```
### Shared Module Rules
**What belongs in shared:**
- ✅ Dumb/presentational components (buttons, cards, modals)
- ✅ Custom directives (tooltips, permissions, auto-focus)
- ✅ Custom pipes (formatting, filtering)
- ✅ Utility functions (date helpers, validators)
- ✅ Common interfaces used across features
**What does NOT belong:**
- ❌ Business logic
- ❌ HTTP calls
- ❌ Feature-specific components
**Example:**
```typescript
// shared/components/data-table/data-table.component.ts
@Component({
selector: 'app-data-table',
standalone: true,
template: `
<table>
<thead>
<tr>
@for (column of columns(); track column.key) {
<th>{{ column.label }}</th>
}
</tr>
</thead>
<tbody>
@for (row of data(); track row.id) {
<tr>
@for (column of columns(); track column.key) {
<td>{{ row[column.key] }}</td>
}
</tr>
}
</tbody>
</table>
`
})
export class DataTableComponent {
columns = input.required<Column[]>();
data = input.required<any[]>();
}
```
### Features Module Rules
**What belongs in features:**
- ✅ Feature-specific components (smart + dumb)
- ✅ Feature-specific services
- ✅ Feature-specific models
- ✅ Feature routing configuration
**Structure:**
```
features/
└── products/
├── components/ # Feature components
│ ├── product-list/
│ ├── product-detail/
│ └── product-form/
├── services/ # Feature services
│ └── product.service.ts
├── models/ # Feature models
│ └── product.interface.ts
├── products.routes.ts # Feature routes
└── products.component.ts # Container component
```
---
## Pattern 2: Smart and Dumb Components
### Overview
Separate components that manage data (smart) from components that display data (dumb).
### Smart Components (Containers)
**Characteristics:**
- Communicate with services
- Manage state
- Handle business logic
- Usually top-level feature components
**Example:**
```typescript
// features/products/product-list.component.ts
@Component({
selector: 'app-product-list',
template: `
<app-search-bar (search)="handleSearch($event)" />
@if (loading()) {
<app-loading-spinner />
} @else if (error()) {
<app-error-message [error]="error()" />
} @else {
@for (product of products(); track product.id) {
<app-product-card
[product]="product"
(edit)="handleEdit($event)"
(delete)="handleDelete($event)"
/>
}
}
`
})
export class ProductListComponent {
private productService = inject(ProductService);
products = signal<Product[]>([]);
loading = signal(false);
error = signal<string | null>(null);
ngOnInit() {
this.loadProducts();
}
loadProducts() {
this.loading.set(true);
this.productService.getProducts().pipe(
takeUntilDestroyed()
).subscribe({
next: products => {
this.products.set(products);
this.loading.set(false);
},
error: err => {
this.error.set(err.message);
this.loading.set(false);
}
});
}
handleEdit(id: string) {
this.router.navigate(['/products', id, 'edit']);
}
handleDelete(id: string) {
if (confirm('Delete this product?')) {
this.productService.delete(id).subscribe();
}
}
}
```
### Dumb Components (Presentational)
**Characteristics:**
- Receive data via @Input or input()
- Emit events via @Output or output()
- No service dependencies
- Highly reusable
- Easy to test
**Example:**
```typescript
// shared/components/product-card.component.ts
@Component({
selector: 'app-product-card',
standalone: true,
imports: [CurrencyPipe],
template: `
<div class="card">
<img [src]="product().image" [alt]="product().name" />
<h3>{{ product().name }}</h3>
<p>{{ product().price | currency }}</p>
<div class="actions">
<button (click)="edit.emit(product().id)">Edit</button>
<button (click)="delete.emit(product().id)">Delete</button>
</div>
</div>
`
})
export class ProductCardComponent {
product = input.required<Product>();
edit = output<string>();
delete = output<string>();
}
```
---
## Pattern 3: Service Layer Architecture
### Overview
Organize services by responsibility: data access, business logic, and state management.
### Data Services
**Purpose:** HTTP communication only
```typescript
// core/services/api.service.ts
@Injectable({ providedIn: 'root' })
export class ApiService {
private http = inject(HttpClient);
private baseUrl = environment.apiUrl;
get<T>(endpoint: string): Observable<T> {
return this.http.get<T>(`${this.baseUrl}/${endpoint}`);
}
post<T>(endpoint: string, data: any): Observable<T> {
return this.http.post<T>(`${this.baseUrl}/${endpoint}`, data);
}
}
```
### Business Services
**Purpose:** Business logic and domain operations
```typescript
// features/products/services/product.service.ts
@Injectable({ providedIn: 'root' })
export class ProductService {
private api = inject(ApiService);
getProducts(): Observable<Product[]> {
return this.api.get<Product[]>('products').pipe(
map(products => this.enrichProducts(products))
);
}
private enrichProducts(products: Product[]): Product[] {
return products.map(p => ({
...p,
displayPrice: this.formatPrice(p.price),
inStock: p.quantity > 0
}));
}
private formatPrice(price: number): string {
return new Intl.NumberFormat('en-US', {
style: 'currency',
currency: 'USD'
}).format(price);
}
}
```
### State Services
**Purpose:** Manage application state
```typescript
// features/cart/services/cart-state.service.ts
@Injectable({ providedIn: 'root' })
export class CartStateService {
private itemsSubject = new BehaviorSubject<CartItem[]>([]);
// Public observable
items$ = this.itemsSubject.asObservable();
// Computed values
total$ = this.items$.pipe(
map(items => items.reduce((sum, item) => sum + item.price * item.quantity, 0))
);
itemCount$ = this.items$.pipe(
map(items => items.reduce((count, item) => count + item.quantity, 0))
);
addItem(item: CartItem) {
const current = this.itemsSubject.value;
this.itemsSubject.next([...current, item]);
}
removeItem(id: string) {
const current = this.itemsSubject.value;
this.itemsSubject.next(current.filter(item => item.id !== id));
}
clear() {
this.itemsSubject.next([]);
}
}
```
---
## Pattern 4: Facade Pattern
### Overview
Create a single entry point for complex subsystems.
### Use Case
When a feature has multiple related services that components need to interact with.
**Example:**
```typescript
// features/checkout/services/checkout.facade.ts
@Injectable({ providedIn: 'root' })
export class CheckoutFacade {
private cartService = inject(CartService);
private paymentService = inject(PaymentService);
private shippingService = inject(ShippingService);
private orderService = inject(OrderService);
// Expose simplified API
cart$ = this.cartService.items$;
total$ = this.cartService.total$;
shippingMethods$ = this.shippingService.getMethods();
processCheckout(data: CheckoutData): Observable<Order> {
return this.validateCart().pipe(
switchMap(() => this.calculateShipping(data.shippingMethod)),
switchMap(shipping => this.processPayment(data.payment, shipping)),
switchMap(payment => this.createOrder({ ...data, payment })),
tap(() => this.cartService.clear())
);
}
private validateCart(): Observable<boolean> {
return this.cart$.pipe(
take(1),
map(items => items.length > 0),
tap(valid => { if (!valid) throw new Error('Cart is empty'); })
);
}
private calculateShipping(method: string): Observable<number> {
return this.shippingService.calculate(method);
}
private processPayment(payment: PaymentInfo, shipping: number): Observable<PaymentResult> {
return this.total$.pipe(
take(1),
switchMap(total => this.paymentService.charge({
...payment,
amount: total + shipping
}))
);
}
private createOrder(data: OrderData): Observable<Order> {
return this.orderService.create(data);
}
}
// Component uses facade instead of multiple services
@Component({...})
export class CheckoutComponent {
private facade = inject(CheckoutFacade);
cart$ = this.facade.cart$;
total$ = this.facade.total$;
checkout(data: CheckoutData) {
this.facade.processCheckout(data).subscribe({
next: order => this.router.navigate(['/order-confirmation', order.id]),
error: err => this.showError(err)
});
}
}
```
---
## Pattern 5: Error Handling Strategy
### Global Error Handler
```typescript
// core/handlers/global-error.handler.ts
@Injectable()
export class GlobalErrorHandler implements ErrorHandler {
private logger = inject(LoggerService);
private notification = inject(NotificationService);
handleError(error: Error | HttpErrorResponse) {
if (error instanceof HttpErrorResponse) {
// Server error
this.handleHttpError(error);
} else {
// Client error
this.handleClientError(error);
}
}
private handleHttpError(error: HttpErrorResponse) {
const message = this.getErrorMessage(error);
this.notification.showError(message);
this.logger.error('HTTP Error', { error, url: error.url });
}
private handleClientError(error: Error) {
this.notification.showError('An unexpected error occurred');
this.logger.error('Client Error', { error, stack: error.stack });
}
private getErrorMessage(error: HttpErrorResponse): string {
if (error.status === 0) {
return 'No internet connection';
} else if (error.status === 401) {
return 'Session expired. Please login again.';
} else if (error.status === 403) {
return 'You do not have permission to perform this action';
} else if (error.status >= 500) {
return 'Server error. Please try again later.';
}
return error.error?.message || 'An error occurred';
}
}
```
### HTTP Error Interceptor
```typescript
// core/interceptors/error.interceptor.ts
export const errorInterceptor: HttpInterceptorFn = (req, next) => {
return next(req).pipe(
catchError((error: HttpErrorResponse) => {
if (error.status === 401) {
// Redirect to login
inject(Router).navigate(['/login']);
}
return throwError(() => error);
})
);
};
```
---
## Pattern 6: Feature Flags
### Overview
Control feature visibility without deploying new code.
```typescript
// core/services/feature-flag.service.ts
@Injectable({ providedIn: 'root' })
export class FeatureFlagService {
private flags = signal<Record<string, boolean>>({
'new-dashboard': false,
'beta-checkout': true,
'admin-analytics': false
});
isEnabled(feature: string): boolean {
return this.flags()[feature] ?? false;
}
enable(feature: string) {
this.flags.update(flags => ({ ...flags, [feature]: true }));
}
disable(feature: string) {
this.flags.update(flags => ({ ...flags, [feature]: false }));
}
}
// Usage in component
@Component({
template: `
@if (showNewDashboard()) {
<app-new-dashboard />
} @else {
<app-old-dashboard />
}
`
})
export class DashboardComponent {
private featureFlags = inject(FeatureFlagService);
showNewDashboard = computed(() => this.featureFlags.isEnabled('new-dashboard'));
}
// Usage in routes
{
path: 'beta',
loadComponent: () => import('./beta.component'),
canActivate: [() => inject(FeatureFlagService).isEnabled('beta-features')]
}
```
---
## Pattern 7: Caching Strategy
### Service-Level Cache
```typescript
// core/services/cache.service.ts
@Injectable({ providedIn: 'root' })
export class CacheService {
private cache = new Map<string, { data: any; timestamp: number }>();
private TTL = 5 * 60 * 1000; // 5 minutes
get<T>(key: string): T | null {
const cached = this.cache.get(key);
if (!cached) return null;
if (Date.now() - cached.timestamp > this.TTL) {
this.cache.delete(key);
return null;
}
return cached.data as T;
}
set(key: string, data: any) {
this.cache.set(key, { data, timestamp: Date.now() });
}
clear(key?: string) {
if (key) {
this.cache.delete(key);
} else {
this.cache.clear();
}
}
}
// Usage in service
@Injectable({ providedIn: 'root' })
export class ProductService {
private cache = inject(CacheService);
private api = inject(ApiService);
getProducts(): Observable<Product[]> {
const cached = this.cache.get<Product[]>('products');
if (cached) {
return of(cached);
}
return this.api.get<Product[]>('products').pipe(
tap(products => this.cache.set('products', products))
);
}
}
```
---
## Pattern 8: Loading States
### Unified Loading Pattern
```typescript
// core/models/loading-state.interface.ts
export interface LoadingState<T> {
loading: boolean;
data: T | null;
error: string | null;
}
// Feature service
@Injectable({ providedIn: 'root' })
export class ProductService {
private state = signal<LoadingState<Product[]>>({
loading: false,
data: null,
error: null
});
state$ = computed(() => this.state());
loadProducts() {
this.state.update(s => ({ ...s, loading: true, error: null }));
this.api.get<Product[]>('products').subscribe({
next: data => this.state.set({ loading: false, data, error: null }),
error: err => this.state.set({ loading: false, data: null, error: err.message })
});
}
}
// Component
@Component({
template: `
@if (state().loading) {
<app-loading-spinner />
} @else if (state().error) {
<app-error-message [message]="state().error" />
} @else if (state().data) {
@for (product of state().data; track product.id) {
<app-product-card [product]="product" />
}
}
`
})
export class ProductListComponent {
private service = inject(ProductService);
state = this.service.state$;
ngOnInit() {
this.service.loadProducts();
}
}
```
---
## Team Structure Patterns
### Pattern 1: Feature Teams
- Each team owns complete features
- Vertical slice (UI + API + DB)
- Autonomous deployment
- Best for: Medium to large teams (10-50+)
### Pattern 2: Layer Teams
- Frontend team, backend team
- Horizontal slice
- Coordinated deployment
- Best for: Small teams (5-10)
### Pattern 3: Component Teams
- Shared component library team
- Feature teams consume components
- Hybrid approach
- Best for: Large organizations (50+)
---
## Summary
Enterprise patterns ensure:
- ✅ Consistent codebase across large teams
- ✅ Predictable structure for new developers
- ✅ Separation of concerns
- ✅ Testable, maintainable code
- ✅ Scalability from day one
**Key Takeaway:** Patterns create consistency. Consistency enables scale.

View File

@@ -0,0 +1,471 @@
# Router-First Methodology
**Author:** Doguhan Uluca
**Source:** Angular for Enterprise Applications, 3rd Edition
**Context:** Enterprise Angular architecture for teams of 5-100+ developers
---
## Core Concept
**Router-First Architecture** is a methodology that enforces designing your application's routing structure BEFORE implementing components. This approach ensures high-level thinking, team consensus, and scalable architecture from day one.
---
## Why Router-First?
Traditional development often starts with components, leading to:
- ❌ Unclear application structure
- ❌ Tight coupling between features
- ❌ Difficult to refactor later
- ❌ Hard to parallelize team work
- ❌ Performance issues at scale
Router-First solves this by:
- ✅ Forcing architectural decisions early
- ✅ Creating clear feature boundaries
- ✅ Enabling lazy loading from the start
- ✅ Facilitating team collaboration
- ✅ Making the app structure visible in code
---
## The 7 Steps
### Step 1: Develop a Roadmap and Scope
**Goal:** Define what features your application needs
**Process:**
1. List all user-facing features
2. Identify MVP vs. future features
3. Group related functionality
4. Define user roles and permissions
**Example:**
```
E-commerce App Roadmap:
Phase 1 (MVP):
- Product browsing
- Shopping cart
- Checkout
- User authentication
Phase 2:
- Order history
- Product reviews
- Wishlist
- Admin panel
Phase 3:
- Analytics dashboard
- Inventory management
- Customer support
```
**Output:** Feature list with priorities
---
### Step 2: Design with Lazy Loading in Mind
**Goal:** Plan bundle structure for optimal performance
**Process:**
1. Each major feature = separate lazy-loaded module
2. Identify shared dependencies
3. Plan loading strategies
4. Set bundle size budgets
**Example:**
```typescript
// Bundle planning
Initial Load (Critical Path):
- Authentication (50 KB)
- Layout shell (30 KB)
- Core services (40 KB)
Total: 120 KB
Lazy Loaded Features:
- Dashboard (60 KB)
- Products (80 KB)
- Orders (45 KB)
- Admin (120 KB)
Strategy:
- Preload Dashboard after login
- Lazy load others on-demand
- Code split large features
```
**Anti-pattern:**
```typescript
// ❌ BAD: Everything imported at root
import { DashboardModule } from './dashboard';
import { ProductsModule } from './products';
import { OrdersModule } from './orders';
```
**Best Practice:**
```typescript
// ✅ GOOD: Lazy loaded via routes
{
path: 'dashboard',
loadChildren: () => import('./dashboard/dashboard.routes')
}
```
---
### Step 3: Implement Walking-Skeleton Navigation
**Goal:** Create navigable shell with placeholder content
**Process:**
1. Define all routes in app.routes.ts
2. Create shell components (empty templates)
3. Verify navigation works
4. Add breadcrumbs and titles
**Example:**
```typescript
// app.routes.ts - Walking skeleton
export const routes: Routes = [
{
path: '',
redirectTo: '/dashboard',
pathMatch: 'full'
},
{
path: 'dashboard',
loadComponent: () => import('./features/dashboard/dashboard.component')
.then(m => m.DashboardComponent),
data: { breadcrumb: 'Dashboard' }
},
{
path: 'products',
loadComponent: () => import('./features/products/products.component')
.then(m => m.ProductsComponent),
data: { breadcrumb: 'Products' }
},
{
path: 'orders',
loadComponent: () => import('./features/orders/orders.component')
.then(m => m.OrdersComponent),
data: { breadcrumb: 'Orders' }
}
];
```
```typescript
// dashboard.component.ts - Shell component
@Component({
selector: 'app-dashboard',
standalone: true,
template: `
<h1>Dashboard</h1>
<p>Coming soon...</p>
`
})
export class DashboardComponent {}
```
**Benefit:** Team can navigate the app before any features are implemented
---
### Step 4: Achieve Stateless, Data-Driven Design
**Goal:** Components receive data, don't manage global state
**Process:**
1. Services handle state and HTTP
2. Components receive data via inputs/signals
3. Components emit events, not side effects
4. Use observables for async data
**Example:**
```typescript
// ❌ BAD: Component manages state
@Component({...})
export class ProductListComponent {
products: Product[] = [];
constructor(private http: HttpClient) {
this.http.get('/api/products').subscribe(data => {
this.products = data;
});
}
}
```
```typescript
// ✅ GOOD: Service manages state
@Injectable({ providedIn: 'root' })
export class ProductService {
private products$ = new BehaviorSubject<Product[]>([]);
getProducts(): Observable<Product[]> {
return this.http.get<Product[]>('/api/products').pipe(
tap(products => this.products$.next(products))
);
}
}
@Component({...})
export class ProductListComponent {
products$ = inject(ProductService).getProducts();
}
```
---
### Step 5: Enforce Decoupled Component Architecture
**Goal:** Separate smart (container) and dumb (presentational) components
**Smart Components:**
- Manage data fetching
- Handle business logic
- Communicate with services
- Located in feature folders
**Dumb Components:**
- Receive data via @Input
- Emit events via @Output
- No business logic
- Located in shared folder
**Example:**
```typescript
// Smart component (container)
@Component({
selector: 'app-product-list',
template: `
@for (product of products(); track product.id) {
<app-product-card
[product]="product"
(addToCart)="handleAddToCart($event)"
/>
}
`
})
export class ProductListComponent {
private productService = inject(ProductService);
products = toSignal(this.productService.getProducts());
handleAddToCart(productId: string) {
this.cartService.addItem(productId);
}
}
// Dumb component (presentational)
@Component({
selector: 'app-product-card',
template: `
<div class="card">
<h3>{{ product.name }}</h3>
<p>{{ product.price | currency }}</p>
<button (click)="addToCart.emit(product.id)">
Add to Cart
</button>
</div>
`
})
export class ProductCardComponent {
@Input({ required: true }) product!: Product;
@Output() addToCart = new EventEmitter<string>();
}
```
---
### Step 6: Differentiate User Controls vs Components
**Goal:** Clear separation between reusable UI and feature-specific components
**User Controls (Shared):**
- Generic UI elements
- No business logic
- Highly reusable
- Location: `shared/components/`
**Feature Components:**
- Feature-specific logic
- Use shared controls
- Business logic included
- Location: `features/<feature>/components/`
**Example Structure:**
```
shared/components/ # User Controls
├── button/
├── input/
├── card/
├── modal/
└── data-table/
features/products/ # Feature Components
├── product-list/
├── product-detail/
├── product-form/
└── product-search/
```
---
### Step 7: Maximize Code Reuse
**Goal:** DRY principle with TypeScript and ES features
**Techniques:**
1. **Shared Utilities**
```typescript
// shared/utils/date.utils.ts
export function formatDate(date: Date): string {
return date.toLocaleDateString('en-US');
}
```
2. **Shared Interfaces**
```typescript
// core/models/api-response.interface.ts
export interface ApiResponse<T> {
data: T;
message: string;
status: number;
}
```
3. **Base Classes (use sparingly)**
```typescript
// core/base/base-component.ts
export abstract class BaseComponent implements OnDestroy {
protected destroy$ = new Subject<void>();
ngOnDestroy() {
this.destroy$.next();
this.destroy$.complete();
}
}
```
4. **Mixins**
```typescript
// shared/mixins/timestamp.mixin.ts
export function WithTimestamp<T extends Constructor>(Base: T) {
return class extends Base {
createdAt = new Date();
updatedAt = new Date();
};
}
```
---
## Real-World Application
### Case Study: E-commerce Platform
**Team:** 15 developers
**Timeline:** 6 months
**Features:** 12 major features
**Router-First Implementation:**
1. **Week 1:** Route planning
- Defined all 12 features as routes
- Created walking skeleton
- Team reviewed and agreed on structure
2. **Week 2-3:** Core setup
- Implemented auth guards
- Set up core services
- Created shared components
3. **Week 4-24:** Parallel development
- 3 teams worked on different features simultaneously
- No merge conflicts (clear boundaries)
- Easy to track progress (routes visible)
4. **Result:**
- On-time delivery
- 185 KB initial bundle
- 45 KB average feature bundle
- Easy onboarding for new devs
---
## Common Mistakes
### 1. Starting with Components
```typescript
// ❌ WRONG ORDER
1. Build dashboard component
2. Build product list component
3. Figure out routing later
// ✅ CORRECT ORDER
1. Design routes
2. Create shell components
3. Implement features
```
### 2. Tight Coupling
```typescript
// ❌ BAD: Direct component dependencies
export class DashboardComponent {
constructor(private productList: ProductListComponent) {}
}
// ✅ GOOD: Service-based communication
export class DashboardComponent {
constructor(private productService: ProductService) {}
}
```
### 3. Ignoring Lazy Loading
```typescript
// ❌ BAD: Eager loading everything
imports: [
DashboardModule,
ProductsModule,
OrdersModule
]
// ✅ GOOD: Lazy load features
{
path: 'dashboard',
loadChildren: () => import('./dashboard/dashboard.routes')
}
```
---
## Checklist
Before claiming Router-First compliance:
- [ ] Routes defined before component implementation
- [ ] All features lazy loaded (except critical path)
- [ ] Walking skeleton navigation works
- [ ] Smart/Dumb component separation
- [ ] Services manage state, not components
- [ ] Shared components in shared folder
- [ ] Feature components in feature folders
- [ ] Clear team agreement on structure
- [ ] Bundle size budgets defined
- [ ] Documentation of routing decisions
---
## Summary
Router-First Architecture is about **planning before building**. By designing routes first, you create a scalable, maintainable, and performant Angular application that grows with your team.
**Key Takeaway:** If you can see your entire application structure by looking at app.routes.ts, you're doing it right.