Initial commit
This commit is contained in:
47
commands/workflows/ml-pipeline.md
Normal file
47
commands/workflows/ml-pipeline.md
Normal file
@@ -0,0 +1,47 @@
|
||||
---
|
||||
model: claude-opus-4-1
|
||||
---
|
||||
|
||||
# Machine Learning Pipeline
|
||||
|
||||
Design and implement a complete ML pipeline for: $ARGUMENTS
|
||||
|
||||
Create a production-ready pipeline including:
|
||||
|
||||
1. **Data Ingestion**:
|
||||
- Multiple data source connectors
|
||||
- Schema validation with Pydantic
|
||||
- Data versioning strategy
|
||||
- Incremental loading capabilities
|
||||
|
||||
2. **Feature Engineering**:
|
||||
- Feature transformation pipeline
|
||||
- Feature store integration
|
||||
- Statistical validation
|
||||
- Handling missing data and outliers
|
||||
|
||||
3. **Model Training**:
|
||||
- Experiment tracking (MLflow/W&B)
|
||||
- Hyperparameter optimization
|
||||
- Cross-validation strategy
|
||||
- Model versioning
|
||||
|
||||
4. **Model Evaluation**:
|
||||
- Comprehensive metrics
|
||||
- A/B testing framework
|
||||
- Bias detection
|
||||
- Performance monitoring
|
||||
|
||||
5. **Deployment**:
|
||||
- Model serving API
|
||||
- Batch/stream prediction
|
||||
- Model registry
|
||||
- Rollback capabilities
|
||||
|
||||
6. **Monitoring**:
|
||||
- Data drift detection
|
||||
- Model performance tracking
|
||||
- Alert system
|
||||
- Retraining triggers
|
||||
|
||||
Include error handling, logging, and make it cloud-agnostic. Use modern tools like DVC, MLflow, or similar. Ensure reproducibility and scalability.
|
||||
Reference in New Issue
Block a user