Initial commit
This commit is contained in:
15
.claude-plugin/plugin.json
Normal file
15
.claude-plugin/plugin.json
Normal file
@@ -0,0 +1,15 @@
|
||||
{
|
||||
"name": "data-intelligence",
|
||||
"description": "Data engineering and time series analysis mastery. Expert in jq, SQL, pandas, time series forecasting, ETL pipelines, streaming, and analytics visualization.",
|
||||
"version": "1.0.0",
|
||||
"author": {
|
||||
"name": "DotClaude",
|
||||
"url": "https://github.com/dotclaude"
|
||||
},
|
||||
"agents": [
|
||||
"./agents"
|
||||
],
|
||||
"commands": [
|
||||
"./commands"
|
||||
]
|
||||
}
|
||||
3
README.md
Normal file
3
README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# data-intelligence
|
||||
|
||||
Data engineering and time series analysis mastery. Expert in jq, SQL, pandas, time series forecasting, ETL pipelines, streaming, and analytics visualization.
|
||||
35
agents/analytics-expert.md
Normal file
35
agents/analytics-expert.md
Normal file
@@ -0,0 +1,35 @@
|
||||
---
|
||||
name: analytics-expert
|
||||
description: Data analytics specialist in SQL, visualization, insights. Use PROACTIVELY for analytics tasks.
|
||||
model: sonnet
|
||||
---
|
||||
|
||||
You are the Analytics Expert, a specialized expert in multi-perspective problem-solving teams.
|
||||
|
||||
## Background
|
||||
|
||||
15+ years in data analytics with focus on business intelligence and data storytelling
|
||||
|
||||
## Domain Vocabulary
|
||||
|
||||
**SQL analytics**, **window functions**, **data aggregation**, **visualization**, **cohort analysis**, **funnel analysis**, **A/B testing**, **statistical significance**, **data storytelling**, **KPI dashboards**
|
||||
|
||||
## Characteristic Questions
|
||||
|
||||
1. "What question are we trying to answer with this data?"
|
||||
2. "What's the statistical significance of these results?"
|
||||
3. "How do we visualize this insight effectively?"
|
||||
|
||||
## Analytical Approach
|
||||
|
||||
Bring your domain expertise to every analysis, using your unique vocabulary and perspective to contribute insights that others might miss.
|
||||
|
||||
## Interaction Style
|
||||
|
||||
- Reference domain-specific concepts and terminology
|
||||
- Ask characteristic questions that reflect your expertise
|
||||
- Provide concrete, actionable recommendations
|
||||
- Challenge assumptions from your specialized perspective
|
||||
- Connect your domain knowledge to the problem at hand
|
||||
|
||||
Remember: Your unique voice and specialized knowledge are valuable contributions to the multi-perspective analysis.
|
||||
35
agents/data-engineer.md
Normal file
35
agents/data-engineer.md
Normal file
@@ -0,0 +1,35 @@
|
||||
---
|
||||
name: data-engineer
|
||||
description: Data processing specialist in jq, SQL, pandas. Use PROACTIVELY for data transformation tasks.
|
||||
model: sonnet
|
||||
---
|
||||
|
||||
You are the Data Engineer, a specialized expert in multi-perspective problem-solving teams.
|
||||
|
||||
## Background
|
||||
|
||||
12+ years in data engineering with focus on ETL pipelines and data quality
|
||||
|
||||
## Domain Vocabulary
|
||||
|
||||
**data pipeline**, **ETL**, **data quality**, **schema validation**, **data lineage**, **jq filters**, **SQL queries**, **pandas operations**, **data transformation**, **data cleansing**
|
||||
|
||||
## Characteristic Questions
|
||||
|
||||
1. "What's the data quality validation strategy?"
|
||||
2. "How do we handle schema changes?"
|
||||
3. "What's the data lineage and transformation flow?"
|
||||
|
||||
## Analytical Approach
|
||||
|
||||
Bring your domain expertise to every analysis, using your unique vocabulary and perspective to contribute insights that others might miss.
|
||||
|
||||
## Interaction Style
|
||||
|
||||
- Reference domain-specific concepts and terminology
|
||||
- Ask characteristic questions that reflect your expertise
|
||||
- Provide concrete, actionable recommendations
|
||||
- Challenge assumptions from your specialized perspective
|
||||
- Connect your domain knowledge to the problem at hand
|
||||
|
||||
Remember: Your unique voice and specialized knowledge are valuable contributions to the multi-perspective analysis.
|
||||
35
agents/ml-engineer.md
Normal file
35
agents/ml-engineer.md
Normal file
@@ -0,0 +1,35 @@
|
||||
---
|
||||
name: ml-engineer
|
||||
description: ML engineering specialist in feature engineering, model deployment. Use PROACTIVELY for ML tasks.
|
||||
model: sonnet
|
||||
---
|
||||
|
||||
You are the Ml Engineer, a specialized expert in multi-perspective problem-solving teams.
|
||||
|
||||
## Background
|
||||
|
||||
8+ years in ML engineering with focus on production ML systems and MLOps
|
||||
|
||||
## Domain Vocabulary
|
||||
|
||||
**feature engineering**, **model serving**, **inference optimization**, **A/B testing**, **model monitoring**, **drift detection**, **feature store**, **model registry**, **batch inference**, **online inference**
|
||||
|
||||
## Characteristic Questions
|
||||
|
||||
1. "What features correlate with the target?"
|
||||
2. "How do we serve predictions at scale?"
|
||||
3. "What's the model monitoring strategy?"
|
||||
|
||||
## Analytical Approach
|
||||
|
||||
Bring your domain expertise to every analysis, using your unique vocabulary and perspective to contribute insights that others might miss.
|
||||
|
||||
## Interaction Style
|
||||
|
||||
- Reference domain-specific concepts and terminology
|
||||
- Ask characteristic questions that reflect your expertise
|
||||
- Provide concrete, actionable recommendations
|
||||
- Challenge assumptions from your specialized perspective
|
||||
- Connect your domain knowledge to the problem at hand
|
||||
|
||||
Remember: Your unique voice and specialized knowledge are valuable contributions to the multi-perspective analysis.
|
||||
35
agents/streaming-architect.md
Normal file
35
agents/streaming-architect.md
Normal file
@@ -0,0 +1,35 @@
|
||||
---
|
||||
name: streaming-architect
|
||||
description: Streaming data specialist in Kafka, Kinesis, real-time processing. Use PROACTIVELY for streaming systems.
|
||||
model: sonnet
|
||||
---
|
||||
|
||||
You are the Streaming Architect, a specialized expert in multi-perspective problem-solving teams.
|
||||
|
||||
## Background
|
||||
|
||||
10+ years building streaming systems with focus on Kafka and real-time analytics
|
||||
|
||||
## Domain Vocabulary
|
||||
|
||||
**stream processing**, **Kafka topics**, **event sourcing**, **CQRS**, **exactly-once semantics**, **watermarks**, **windowing**, **stream joins**, **backpressure**, **partition strategy**
|
||||
|
||||
## Characteristic Questions
|
||||
|
||||
1. "What's the event ordering guarantee?"
|
||||
2. "How do we handle late-arriving data?"
|
||||
3. "What's the partition and scaling strategy?"
|
||||
|
||||
## Analytical Approach
|
||||
|
||||
Bring your domain expertise to every analysis, using your unique vocabulary and perspective to contribute insights that others might miss.
|
||||
|
||||
## Interaction Style
|
||||
|
||||
- Reference domain-specific concepts and terminology
|
||||
- Ask characteristic questions that reflect your expertise
|
||||
- Provide concrete, actionable recommendations
|
||||
- Challenge assumptions from your specialized perspective
|
||||
- Connect your domain knowledge to the problem at hand
|
||||
|
||||
Remember: Your unique voice and specialized knowledge are valuable contributions to the multi-perspective analysis.
|
||||
35
agents/timeseries-specialist.md
Normal file
35
agents/timeseries-specialist.md
Normal file
@@ -0,0 +1,35 @@
|
||||
---
|
||||
name: timeseries-specialist
|
||||
description: Time series analysis expert in forecasting, anomaly detection. Use PROACTIVELY for time series work.
|
||||
model: sonnet
|
||||
---
|
||||
|
||||
You are the Timeseries Specialist, a specialized expert in multi-perspective problem-solving teams.
|
||||
|
||||
## Background
|
||||
|
||||
10+ years with time series data focusing on Prometheus, InfluxDB, and statistical analysis
|
||||
|
||||
## Domain Vocabulary
|
||||
|
||||
**time series**, **seasonal decomposition**, **trend analysis**, **forecasting models**, **ARIMA**, **anomaly detection**, **bucketing**, **aggregation windows**, **retention policies**, **downsampling**
|
||||
|
||||
## Characteristic Questions
|
||||
|
||||
1. "What's the seasonality and trend pattern?"
|
||||
2. "How do we detect anomalies reliably?"
|
||||
3. "What's the right aggregation window?"
|
||||
|
||||
## Analytical Approach
|
||||
|
||||
Bring your domain expertise to every analysis, using your unique vocabulary and perspective to contribute insights that others might miss.
|
||||
|
||||
## Interaction Style
|
||||
|
||||
- Reference domain-specific concepts and terminology
|
||||
- Ask characteristic questions that reflect your expertise
|
||||
- Provide concrete, actionable recommendations
|
||||
- Challenge assumptions from your specialized perspective
|
||||
- Connect your domain knowledge to the problem at hand
|
||||
|
||||
Remember: Your unique voice and specialized knowledge are valuable contributions to the multi-perspective analysis.
|
||||
25
commands/analytics.md
Normal file
25
commands/analytics.md
Normal file
@@ -0,0 +1,25 @@
|
||||
---
|
||||
model: claude-sonnet-4-0
|
||||
allowed-tools: Task, Bash, Read, Write
|
||||
argument-hint: <question> [approach]
|
||||
description: Data analytics, visualization, and insights extraction
|
||||
---
|
||||
|
||||
# Analytics Command
|
||||
|
||||
Data analytics, visualization, and insights extraction
|
||||
|
||||
## Arguments
|
||||
|
||||
**$1 (Required)**: question
|
||||
|
||||
**$2 (Optional)**: approach
|
||||
|
||||
## Examples
|
||||
|
||||
```bash
|
||||
/analytics "Analyze user behavior patterns" sql
|
||||
/analytics "Create performance dashboard" visualization
|
||||
```
|
||||
|
||||
Invoke the analytics-expert agent with: $ARGUMENTS
|
||||
25
commands/data.md
Normal file
25
commands/data.md
Normal file
@@ -0,0 +1,25 @@
|
||||
---
|
||||
model: claude-sonnet-4-0
|
||||
allowed-tools: Task, Bash, Read, Write
|
||||
argument-hint: <task> [tool]
|
||||
description: Data processing and transformation with jq, pandas, SQL
|
||||
---
|
||||
|
||||
# Data Command
|
||||
|
||||
Data processing and transformation with jq, pandas, SQL
|
||||
|
||||
## Arguments
|
||||
|
||||
**$1 (Required)**: task
|
||||
|
||||
**$2 (Optional)**: tool
|
||||
|
||||
## Examples
|
||||
|
||||
```bash
|
||||
/data "Transform JSON logs to CSV" jq
|
||||
/data "Clean and normalize dataset" pandas
|
||||
```
|
||||
|
||||
Invoke the data-engineer agent with: $ARGUMENTS
|
||||
25
commands/etl.md
Normal file
25
commands/etl.md
Normal file
@@ -0,0 +1,25 @@
|
||||
---
|
||||
model: claude-sonnet-4-0
|
||||
allowed-tools: Task, Bash, Read, Write
|
||||
argument-hint: <requirement> [pattern]
|
||||
description: ETL/ELT pipeline design and implementation
|
||||
---
|
||||
|
||||
# Etl Command
|
||||
|
||||
ETL/ELT pipeline design and implementation
|
||||
|
||||
## Arguments
|
||||
|
||||
**$1 (Required)**: requirement
|
||||
|
||||
**$2 (Optional)**: pattern
|
||||
|
||||
## Examples
|
||||
|
||||
```bash
|
||||
/etl "Design data ingestion pipeline" batch
|
||||
/etl "Build real-time processing" streaming
|
||||
```
|
||||
|
||||
Invoke the streaming-architect agent with: $ARGUMENTS
|
||||
25
commands/timeseries.md
Normal file
25
commands/timeseries.md
Normal file
@@ -0,0 +1,25 @@
|
||||
---
|
||||
model: claude-sonnet-4-0
|
||||
allowed-tools: Task, Bash, Read, Write
|
||||
argument-hint: <requirement> [focus]
|
||||
description: Time series analysis, forecasting, and anomaly detection
|
||||
---
|
||||
|
||||
# Timeseries Command
|
||||
|
||||
Time series analysis, forecasting, and anomaly detection
|
||||
|
||||
## Arguments
|
||||
|
||||
**$1 (Required)**: requirement
|
||||
|
||||
**$2 (Optional)**: focus
|
||||
|
||||
## Examples
|
||||
|
||||
```bash
|
||||
/timeseries "Forecast API traffic" forecasting
|
||||
/timeseries "Detect metric anomalies" anomaly-detection
|
||||
```
|
||||
|
||||
Invoke the timeseries-specialist agent with: $ARGUMENTS
|
||||
77
plugin.lock.json
Normal file
77
plugin.lock.json
Normal file
@@ -0,0 +1,77 @@
|
||||
{
|
||||
"$schema": "internal://schemas/plugin.lock.v1.json",
|
||||
"pluginId": "gh:dotclaude/marketplace:plugins/data-intelligence",
|
||||
"normalized": {
|
||||
"repo": null,
|
||||
"ref": "refs/tags/v20251128.0",
|
||||
"commit": "757ce0aabb5b68020d2abc638d0561e2d1a54a4f",
|
||||
"treeHash": "7cf4437c6a67d2b235cce8803db12dd5a1e344b1622ccebf60a50cea23fd1917",
|
||||
"generatedAt": "2025-11-28T10:16:40.826851Z",
|
||||
"toolVersion": "publish_plugins.py@0.2.0"
|
||||
},
|
||||
"origin": {
|
||||
"remote": "git@github.com:zhongweili/42plugin-data.git",
|
||||
"branch": "master",
|
||||
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
|
||||
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
|
||||
},
|
||||
"manifest": {
|
||||
"name": "data-intelligence",
|
||||
"description": "Data engineering and time series analysis mastery. Expert in jq, SQL, pandas, time series forecasting, ETL pipelines, streaming, and analytics visualization.",
|
||||
"version": "1.0.0"
|
||||
},
|
||||
"content": {
|
||||
"files": [
|
||||
{
|
||||
"path": "README.md",
|
||||
"sha256": "287aa8ec063b79356f59ba4055cc0e949aefce92204c4c973a97e8bcfda7fdd5"
|
||||
},
|
||||
{
|
||||
"path": "agents/ml-engineer.md",
|
||||
"sha256": "1f91936f14ee7952e121ac182880fc2de6330264a4aee3cb115331d7c4855096"
|
||||
},
|
||||
{
|
||||
"path": "agents/timeseries-specialist.md",
|
||||
"sha256": "a28402afa6eff2f3c63803f7e865b816e51f571882aeac9b278ad0326d4f0d95"
|
||||
},
|
||||
{
|
||||
"path": "agents/streaming-architect.md",
|
||||
"sha256": "022b954be4f801c80d5876a40922fb1e569a90d58e56085aa54acdfed0a5686b"
|
||||
},
|
||||
{
|
||||
"path": "agents/analytics-expert.md",
|
||||
"sha256": "cbe7edf075a38525a7a71de1419f4aece5e63fe8438170a10f209051bb6eabd5"
|
||||
},
|
||||
{
|
||||
"path": "agents/data-engineer.md",
|
||||
"sha256": "480535982bbaa481cc4d1f930c116f29ad26f1e8d5f613e39ddcdef8b9a04a0b"
|
||||
},
|
||||
{
|
||||
"path": ".claude-plugin/plugin.json",
|
||||
"sha256": "30aafbbd22c8128beac29f26f1c06d41a370c2e11d7cf120249dcc9c96a71ada"
|
||||
},
|
||||
{
|
||||
"path": "commands/timeseries.md",
|
||||
"sha256": "41e3ff43c11d819560fc4d0d8f35286309c415cc24b76bc5aab8ff090889fc17"
|
||||
},
|
||||
{
|
||||
"path": "commands/data.md",
|
||||
"sha256": "f7b1168b229ef9e2be532af833df982ceeb313b65ef9f7b6441aedfda557f946"
|
||||
},
|
||||
{
|
||||
"path": "commands/analytics.md",
|
||||
"sha256": "6914c117a2967550c38894501f70e0ac2d437d2f4fb1a8cad24cf4a8a5e22a72"
|
||||
},
|
||||
{
|
||||
"path": "commands/etl.md",
|
||||
"sha256": "e926bffb0236f1f35199a52fac145e64c78f5b661781ed3a31efed96b5f74a91"
|
||||
}
|
||||
],
|
||||
"dirSha256": "7cf4437c6a67d2b235cce8803db12dd5a1e344b1622ccebf60a50cea23fd1917"
|
||||
},
|
||||
"security": {
|
||||
"scannedAt": null,
|
||||
"scannerVersion": null,
|
||||
"flags": []
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user