8.8 KiB
name, description
| name | description |
|---|---|
| skill-aws-knowledge-tool | CLI tool for querying AWS Knowledge MCP Server |
When to use
- When you need to search AWS documentation programmatically
- When you need to read and convert AWS docs to markdown
- When you need to discover related AWS documentation
AWS Knowledge Tool Skill
Purpose
This skill provides access to the aws-knowledge-tool CLI - a command-line interface for querying the AWS Knowledge MCP Server. Use it to search, read, and discover AWS documentation programmatically.
When to Use This Skill
Use this skill when:
- You need to search AWS documentation with full-text search
- You need to read AWS documentation pages as markdown
- You need to discover related documentation recommendations
- You need structured/JSON output for processing
Do NOT use this skill for:
- Writing new AWS documentation (read-only)
- Deploying AWS resources (documentation only)
- AWS CLI operations (use AWS CLI instead)
CLI Tool: aws-knowledge-tool
The aws-knowledge-tool is a CLI tool for querying the AWS Knowledge MCP Server to search, read, and discover AWS documentation.
Installation
# Clone and install
git clone https://github.com/dnvriend/aws-knowledge-tool.git
cd aws-knowledge-tool
uv tool install .
Prerequisites
- Python 3.14+
- uv package manager
Quick Start
# Search AWS documentation
aws-knowledge-tool search "Lambda function URLs"
# Read documentation page
aws-knowledge-tool read "https://docs.aws.amazon.com/lambda/latest/dg/welcome.html"
# Get recommendations
aws-knowledge-tool recommend "https://docs.aws.amazon.com/lambda/latest/dg/welcome.html"
Progressive Disclosure
📖 Core Commands (Click to expand)
search - Search AWS Documentation
Search across AWS documentation, blogs, solutions library, architecture center, and prescriptive guidance.
Usage:
aws-knowledge-tool search QUERY [OPTIONS]
Arguments:
QUERY: Search query text (required)--limit N/-l N: Maximum results (default: 10)--offset M/-o M: Skip first M results for pagination (default: 0)--json: Output JSON format for processing--stdin: Read query from stdin (for pipelines)-v/-vv/-vvv: Verbosity (INFO/DEBUG/TRACE)
Examples:
# Basic search
aws-knowledge-tool search "S3 versioning"
# With pagination
aws-knowledge-tool search "Lambda" --limit 10 --offset 20
# JSON output
aws-knowledge-tool search "DynamoDB" --json
# Pipeline usage
echo "CloudFormation" | aws-knowledge-tool search --stdin --json
Output:
Returns list of results with: title, url, context, rank_order
read - Read AWS Documentation
Fetch and convert AWS documentation pages to markdown format.
Usage:
aws-knowledge-tool read URL [OPTIONS]
Arguments:
URL: AWS documentation URL (required)--start-index N/-s N: Starting character index for pagination--max-length M/-m M: Maximum characters to fetch--json: Output JSON format--stdin: Read URL from stdin-v/-vv/-vvv: Verbosity (INFO/DEBUG/TRACE)
Examples:
# Read full document
aws-knowledge-tool read "https://docs.aws.amazon.com/lambda/latest/dg/welcome.html"
# With pagination (large docs)
aws-knowledge-tool read "https://docs.aws.amazon.com/..." \
--start-index 5000 --max-length 2000
# Pipeline from search
aws-knowledge-tool search "Lambda" --json | \
jq -r '.[0].url' | \
aws-knowledge-tool read --stdin
Output: Returns markdown-formatted documentation content.
Supported domains:
docs.aws.amazon.comaws.amazon.com
recommend - Get Documentation Recommendations
Discover related documentation through four recommendation types.
Usage:
aws-knowledge-tool recommend URL [OPTIONS]
Arguments:
URL: AWS documentation URL (required)--type TYPE/-t TYPE: Filter by recommendation typehighly_rated: Popular pages within same AWS servicenew: Recently added pages (useful for finding new features)similar: Pages covering similar topicsjourney: Pages commonly viewed next by other users
--limit N/-l N: Max results per category (default: 5)--offset M/-o M: Skip first M per category (default: 0)--json: Output JSON format--stdin: Read URL from stdin-v/-vv/-vvv: Verbosity (INFO/DEBUG/TRACE)
Examples:
# Get all recommendations
aws-knowledge-tool recommend "https://docs.aws.amazon.com/lambda/latest/dg/welcome.html"
# Filter by type (find new features)
aws-knowledge-tool recommend "https://docs.aws.amazon.com/..." --type new
# JSON output with limit
aws-knowledge-tool recommend "https://docs.aws.amazon.com/..." --json --limit 3
# Pipeline usage
aws-knowledge-tool search "Lambda" --json | \
jq -r '.[0].url' | \
aws-knowledge-tool recommend --stdin --type similar
Output: Returns dict with recommendation categories and their pages (title, url, context).
⚙️ Advanced Features (Click to expand)
Multi-Level Verbosity Logging
Control logging detail with progressive verbosity levels. All logs output to stderr.
Logging Levels:
| Flag | Level | Output | Use Case |
|---|---|---|---|
| (none) | WARNING | Errors and warnings only | Production, quiet mode |
-v |
INFO | + High-level operations | Normal debugging |
-vv |
DEBUG | + Detailed info, full tracebacks | Development, troubleshooting |
-vvv |
TRACE | + Library internals | Deep debugging |
Examples:
# INFO level - see operations
aws-knowledge-tool search "Lambda" -v
# DEBUG level - see detailed info
aws-knowledge-tool search "Lambda" -vv
# TRACE level - see all internals
aws-knowledge-tool search "Lambda" -vvv
Shell Completion
Native shell completion for bash, zsh, and fish.
Installation:
# Bash (add to ~/.bashrc)
eval "$(aws-knowledge-tool completion bash)"
# Zsh (add to ~/.zshrc)
eval "$(aws-knowledge-tool completion zsh)"
# Fish (save to completions)
aws-knowledge-tool completion fish > ~/.config/fish/completions/aws-knowledge-tool.fish
Pipeline Composition
Compose commands with Unix pipes for powerful workflows.
Examples:
# Search → Extract URL → Read
aws-knowledge-tool search "Lambda" --json | \
jq -r '.[0].url' | \
aws-knowledge-tool read --stdin
# Search → Extract URL → Get similar docs
aws-knowledge-tool search "S3" --json | \
jq -r '.[0].url' | \
aws-knowledge-tool recommend --stdin --type similar
# Save search results to file
aws-knowledge-tool search "DynamoDB" --json > results.json
# Read and save as markdown
aws-knowledge-tool read "https://docs.aws.amazon.com/..." > lambda-docs.md
🔧 Troubleshooting (Click to expand)
Common Issues
Issue: Command not found
# Verify installation
aws-knowledge-tool --version
# Reinstall if needed
cd aws-knowledge-tool
uv tool install . --reinstall
Issue: No results from search
- Check your search query is specific enough
- Try broader search terms
- Use
--jsonto see full response
Issue: URL validation error
- Ensure URL is from
docs.aws.amazon.comoraws.amazon.com - Check URL is accessible in browser first
Issue: Connection timeout
- Check internet connection
- AWS Knowledge MCP Server may be temporarily unavailable
- Try again with verbose flag:
-vv
Getting Help
# Show help
aws-knowledge-tool --help
# Command-specific help
aws-knowledge-tool search --help
aws-knowledge-tool read --help
aws-knowledge-tool recommend --help
Exit Codes
0: Success1: Client error (invalid arguments, validation failed)2: Server error (API error, network issue)3: Network error (connection failed, timeout)
Output Formats
Default (Markdown):
- Human-readable formatted output
- Search: ranked list with titles, URLs, context
- Read: markdown content
- Recommend: grouped by category with titles, URLs
JSON (--json flag):
- Machine-readable structured data
- Perfect for pipelines and processing
- Consistent structure across commands
Best Practices
- Use JSON for pipelines: Enable
--jsonwhen piping to other tools - Pagination for large results: Use
--limitand--offsetfor controlled fetching - Progressive verbosity: Start with
-v, increase to-vv/-vvvonly if needed - Save frequent searches: Cache JSON results to avoid repeated API calls
- Compose commands: Leverage Unix pipes for powerful workflows
Resources
- GitHub: https://github.com/dnvriend/aws-knowledge-tool
- AWS Knowledge MCP Server: https://knowledge-mcp.global.api.aws
- MCP Specification: https://modelcontextprotocol.io