Files
2025-11-29 18:22:25 +08:00

240 lines
8.0 KiB
Markdown

---
name: implementing-query-caching
description: Implement query result caching with Redis and proper invalidation strategies for Prisma 6. Use when optimizing frequently accessed data, improving read-heavy application performance, or reducing database load through caching.
allowed-tools: Read, Write, Edit
version: 1.0.0
---
# Query Result Caching with Redis
Efficient query result caching for Prisma 6 applications using Redis: cache key generation, invalidation strategies, TTL management, and when caching provides value.
---
<role>
Implement query result caching with Redis for Prisma 6, covering cache key generation, invalidation, TTL strategies, and identifying when caching delivers value.
</role>
<when-to-activate>
User mentions: caching, Redis, performance optimization, slow queries, read-heavy applications, frequently accessed data, reducing database load, improving response times, cache invalidation, cache warming, or optimizing Prisma queries.
</when-to-activate>
<overview>
Query caching reduces database load and improves read response times, but adds complexity: cache invalidation, consistency challenges, infrastructure. Key capabilities: Redis-Prisma integration, consistent cache key patterns, mutation-triggered invalidation, TTL strategies (time/event-based), and identifying when caching provides value.
</overview>
<workflow>
**Phase 1: Identify Cache Candidates**
Analyze query patterns for read-heavy operations; identify data with acceptable staleness; measure baseline query performance; estimate cache hit rate and improvement.
**Phase 2: Implement Cache Layer**
Set up Redis with connection pooling; create cache wrapper around Prisma queries; implement consistent cache key generation; add cache read with database fallback.
**Phase 3: Implement Invalidation**
Identify mutations affecting cached data; add invalidation to update/delete operations; handle bulk operations and cascading invalidation; test across scenarios.
**Phase 4: Configure TTL**
Determine appropriate TTL per data type; implement time-based expiration; add event-based invalidation for critical data; monitor hit rates and adjust.
</workflow>
<decision-tree>
## When to Cache
**Strong Candidates:**
- Read-heavy data (>10:1 ratio): user profiles, product catalogs, configuration, content lists
- Expensive queries: large aggregations, multi-join, complex filtering, computed values
- High-frequency access
: homepage data, navigation, popular results, trending content
**Weak Candidates:**
- Write-heavy data (<3:1 ratio): analytics, activity logs, messages, live updates
- Frequently changing: stock prices, inventory, bids, live scores
- User-specific: shopping carts, drafts, recommendations, sessions
- Fast simple queries: primary key lookups, indexed queries, already in DB cache
**Decision Tree:**
```
Read/write ratio > 10:1?
├─ Yes: Strong candidate
│ └─ Data stale 1+ minutes acceptable?
│ ├─ Yes: Long TTL (5-60min) + event invalidation
│ └─ No: Short TTL (10-60sec) + aggressive invalidation
└─ No: Ratio > 3:1?
├─ Yes: Moderate candidate, if query > 100ms → short TTL (30-120sec)
└─ No: Skip; optimize query/indexes/pooling instead
```
</decision-tree>
<examples>
## Basic Cache Implementation
**Example 1: Cache-Aside Pattern**
```typescript
import { PrismaClient } from '@prisma/client';
import { Redis } from 'ioredis';
const prisma = new PrismaClient();
const redis = new Redis({
host: process.env.REDIS_HOST,
port: parseInt(process.env.REDIS_PORT || '6379'),
maxRetriesPerRequest: 3,
});
async function getCachedUser(userId: string) {
const cacheKey = `user:${userId}`;
const cached = await redis.get(cacheKey);
if (cached) return JSON.parse(cached);
const user = await prisma.user.findUnique({
where: { id: userId },
select: { id: true, email: true, name: true, role: true },
});
if (user) await redis.setex(cacheKey, 300, JSON.stringify(user));
return user;
}
```
**Example 2: Consistent Key Generation**
```typescript
import crypto from 'crypto';
function generateCacheKey(entity: string, query: Record<string, unknown>): string {
const sortedQuery = Object.keys(query)
.sort()
.reduce((acc, key) => {
acc[key] = query[key];
return acc;
}, {} as Record<string, unknown>);
const queryHash = crypto
.createHash('sha256')
.update(JSON.stringify(sortedQuery))
.digest('hex')
.slice(0, 16);
return `${entity}:${queryHash}`;
}
async function getCachedPosts(filters: {
authorId?: string;
published?: boolean;
tags?: string[];
}) {
const cacheKey = generateCacheKey('posts', filters);
const cached = await redis.get(cacheKey);
if (cached) return JSON.parse(cached);
const posts = await prisma.post.findMany({
where: filters,
select: { id: true, title: true, createdAt: true },
});
await redis.setex(cacheKey, 120, JSON.stringify(posts));
return posts;
}
```
**Example 3: Cache Invalidation on Mutation**
```typescript
async function updatePost(postId: string, data: { title?: string; content?: string }) {
const post = await prisma.post.update({ where: { id: postId }, data });
await Promise.all([
redis.del(`post:${postId}`),
redis.del(`posts:author:${post.authorId}`),
redis.keys('posts:*').then((keys) => keys.length > 0 && redis.del(...keys)),
]);
return post;
}
```
**Note:** redis.keys() with patterns is slow on large keysets; use SCAN or maintain key sets.
**Example 4: TTL Strategy**
```typescript
const TTL = {
user_profile: 600,
user_settings: 300,
posts_list: 120,
post_detail: 180,
popular_posts: 60,
real_time_stats: 10,
};
async function cacheWithTTL<T>(
key: string,
ttlType: keyof typeof TTL,
fetchFn: () => Promise<T>
): Promise<T> {
const cached = await redis.get(key);
if (cached) return JSON.parse(cached);
const data = await fetchFn();
await redis.setex(key, TTL[ttlType], JSON.stringify(data));
return data;
}
```
</examples>
<constraints>
**MUST:**
* Use cache-aside pattern (not cache-through)
* Consistent cache key generation (no random/timestamp components)
* Invalidate cache on all mutations affecting cached data
* Graceful Redis failure handling with database fallback
* JSON serialization (consistent with Prisma types)
* TTL on all cached values (never infinite)
* Thorough cache invalidation testing
**SHOULD:**
- Redis connection pooling (ioredis)
- Separate cache logic from business logic
- Monitor cache hit rates; adjust TTL accordingly
- Shorter TTL for frequently changing data
- Cache warming for predictably popular data
- Document cache key patterns and invalidation rules
- Use
Redis SCAN vs KEYS for pattern matching
**NEVER:**
- Cache authentication tokens or sensitive credentials
- Use infinite TTL
- Pattern-match invalidation in hot paths
- Cache Prisma queries with skip/take without pagination in key
- Assume cache always available
- Store Prisma instances directly (serialize first)
- Cache write-heavy data
</constraints>
<validation>
**Cache Hit Rate:** Monitor >60% for effective caching; <40% signals strategy reconsideration or TTL adjustment.
**Invalidation Testing:** Verify all mutations invalidate correct keys; test cascading invalidation for related entities; confirm bulk operations invalidate list caches; ensure no stale data post-mutation.
**Performance:** Measure query latency with/without cache; target >50% latency reduction; monitor P95/P99 improvements; verify caching doesn't increase memory pressure.
**Redis Health:** Monitor connection pool utilization, memory usage (set maxmemory-policy), connection failures; test application behavior when Redis is unavailable.
</validation>
---
## References
- [Redis Configuration](./references/redis-configuration.md) — Connection setup, serverless
- [Invalidation Patterns](./references/invalidation-patterns.md) — Event-based, time-based, hybrid
- [Advanced Examples](./references/advanced-examples.md) — Bulk invalidation, cache warming
- [Common Pitfalls](./references/common-pitfalls.md) — Infinite TTL, key inconsistency, missing invalidation