--- name: optimizing-query-performance description: Optimize queries with indexes, batching, and efficient Prisma operations for production performance. allowed-tools: Read, Write, Edit, Bash version: 1.0.0 --- Query optimization requires strategic indexing, efficient batching, and monitoring to prevent common production anti-patterns. Key capabilities: Strategic index placement (@@index, @@unique) · Efficient batch operations (createMany, transactions) · Query analysis & N+1 prevention · Field selection optimization & cursor pagination **Phase 1 — Identify:** Enable query logging; analyze patterns/execution times; identify missing indexes, N+1 problems, or inefficient batching **Phase 2 — Optimize:** Add indexes for filtered/sorted fields; replace loops with batch operations; select only needed fields; use cursor pagination for large datasets **Phase 3 — Validate:** Measure execution time before/after; verify index usage with EXPLAIN ANALYZE; monitor connection pool under load ## Quick Reference **Index Strategy:** | Scenario | Index Type | Example | | --------------------- | ----------------------------------- | ------------------------------ | | Single field filter | `@@index([field])` | `@@index([status])` | | Multiple field filter | `@@index([field1, field2])` | `@@index([userId, status])` | | Sort + filter | `@@index([filterField, sortField])` | `@@index([status, createdAt])` | **Batch Operations:** | Operation | Slow (Loop) | Fast (Batch) | | --------- | ---------------------- | -------------- | | Insert | `for...await create()` | `createMany()` | | Update | `for...await update()` | `updateMany()` | | Delete | `for...await delete()` | `deleteMany()` | **Performance Gains:** Indexes (10-100x) · Batch ops (50-100x for 1000+ records) · Cursor pagination (constant vs O(n)) **MUST:** Add indexes for WHERE/ORDER BY/FK fields with frequent queries; use createMany for 100+ records; cursor pagination for deep pagination; select only needed fields; monitor query duration in production **SHOULD:** Test indexes with production data; chunk 100k+ batches into smaller sizes; use `@@index([field1, field2])` for multi-field filters; remove unused indexes **NEVER:** Add indexes without performance measurement; offset pagination beyond page 100 on large tables; fetch all fields when only needing few; loop with individual creates/updates; ignore slow query warnings **Measure Performance:** ```typescript const start = Date.now() const result = await prisma.user.findMany({ ... }) console.log(`Query took ${Date.now() - start}ms`) ``` Expected: 50-90% improvement for indexed queries, 50-100x for batch operations **Verify Index Usage:** Run EXPLAIN ANALYZE; confirm "Index Scan" vs "Seq Scan" **Monitor Production:** Track P95/P99 latency; expect reduced slow query frequency **Check Write Performance:** Writes may increase 10-30% per index if rarely-used; consider removal ## References - **Index Strategy**: `references/index-strategy.md` — indexing patterns and trade-offs - **Batch Operations**: `references/batch-operations.md` — bulk operations and chunking - **Query Monitoring**: `references/query-monitoring.md` — logging setup and slow query analysis - **Field Selection**: `references/field-selection.md` — select vs include patterns and N+1 prevention - **Optimization Examples**: `references/optimization-examples.md` — real-world improvements - **Next.js Integration**: Next.js plugin for App Router-specific patterns - **Serverless**: CLIENT-serverless-config skill for connection pooling