Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:17:17 +08:00
commit 6062d3994e
39 changed files with 21748 additions and 0 deletions

View File

@@ -0,0 +1,974 @@
# Standard Library Reference - Python Code Node
Complete guide to available Python standard library modules in n8n Code nodes.
---
## ⚠️ Critical Limitation
**NO EXTERNAL LIBRARIES AVAILABLE**
Python Code nodes in n8n have **ONLY** the Python standard library. No pip packages.
```python
# ❌ NOT AVAILABLE - Will cause ModuleNotFoundError
import requests # No HTTP library!
import pandas # No data analysis!
import numpy # No numerical computing!
import bs4 # No web scraping!
import selenium # No browser automation!
import psycopg2 # No database drivers!
import pymongo # No MongoDB!
import sqlalchemy # No ORMs!
# ✅ AVAILABLE - Standard library only
import json
import datetime
import re
import base64
import hashlib
import urllib.parse
import urllib.request
import math
import random
import statistics
```
**Recommendation**: Use **JavaScript** for 95% of use cases. JavaScript has more capabilities in n8n.
---
## Available Modules
### Priority 1: Most Useful (Use These)
1. **json** - JSON parsing and generation
2. **datetime** - Date and time operations
3. **re** - Regular expressions
4. **base64** - Base64 encoding/decoding
5. **hashlib** - Hashing (MD5, SHA256, etc.)
6. **urllib.parse** - URL parsing and encoding
### Priority 2: Moderately Useful
7. **math** - Mathematical functions
8. **random** - Random number generation
9. **statistics** - Statistical functions
10. **collections** - Specialized data structures
### Priority 3: Occasionally Useful
11. **itertools** - Iterator tools
12. **functools** - Higher-order functions
13. **operator** - Standard operators as functions
14. **string** - String constants and templates
15. **textwrap** - Text wrapping utilities
---
## Module 1: json - JSON Operations
**Most common module** - Parse and generate JSON data.
### Parse JSON String
```python
import json
# Parse JSON string to Python dict
json_string = '{"name": "Alice", "age": 30}'
data = json.loads(json_string)
return [{
"json": {
"name": data["name"],
"age": data["age"],
"parsed": True
}
}]
```
### Generate JSON String
```python
import json
# Convert Python dict to JSON string
data = {
"users": [
{"id": 1, "name": "Alice"},
{"id": 2, "name": "Bob"}
],
"total": 2
}
json_string = json.dumps(data, indent=2)
return [{
"json": {
"json_output": json_string,
"length": len(json_string)
}
}]
```
### Handle JSON Errors
```python
import json
webhook_data = _input.first()["json"]["body"]
json_string = webhook_data.get("data", "")
try:
parsed = json.loads(json_string)
status = "valid"
error = None
except json.JSONDecodeError as e:
parsed = None
status = "invalid"
error = str(e)
return [{
"json": {
"status": status,
"data": parsed,
"error": error
}
}]
```
### Pretty Print JSON
```python
import json
# Format JSON with indentation
data = _input.first()["json"]
pretty_json = json.dumps(data, indent=2, sort_keys=True)
return [{
"json": {
"formatted": pretty_json
}
}]
```
---
## Module 2: datetime - Date and Time
**Very common** - Date parsing, formatting, calculations.
### Current Date and Time
```python
from datetime import datetime
now = datetime.now()
return [{
"json": {
"timestamp": now.isoformat(),
"date": now.strftime("%Y-%m-%d"),
"time": now.strftime("%H:%M:%S"),
"formatted": now.strftime("%B %d, %Y at %I:%M %p")
}
}]
```
### Parse Date String
```python
from datetime import datetime
date_string = "2025-01-15T14:30:00"
dt = datetime.fromisoformat(date_string)
return [{
"json": {
"year": dt.year,
"month": dt.month,
"day": dt.day,
"hour": dt.hour,
"weekday": dt.strftime("%A")
}
}]
```
### Date Calculations
```python
from datetime import datetime, timedelta
now = datetime.now()
# Calculate future/past dates
tomorrow = now + timedelta(days=1)
yesterday = now - timedelta(days=1)
next_week = now + timedelta(weeks=1)
one_hour_ago = now - timedelta(hours=1)
return [{
"json": {
"now": now.isoformat(),
"tomorrow": tomorrow.isoformat(),
"yesterday": yesterday.isoformat(),
"next_week": next_week.isoformat(),
"one_hour_ago": one_hour_ago.isoformat()
}
}]
```
### Compare Dates
```python
from datetime import datetime
date1 = datetime(2025, 1, 15)
date2 = datetime(2025, 1, 20)
# Calculate difference
diff = date2 - date1
return [{
"json": {
"days_difference": diff.days,
"seconds_difference": diff.total_seconds(),
"date1_is_earlier": date1 < date2,
"date2_is_later": date2 > date1
}
}]
```
### Format Dates
```python
from datetime import datetime
dt = datetime.now()
return [{
"json": {
"iso": dt.isoformat(),
"us_format": dt.strftime("%m/%d/%Y"),
"eu_format": dt.strftime("%d/%m/%Y"),
"long_format": dt.strftime("%A, %B %d, %Y"),
"time_12h": dt.strftime("%I:%M %p"),
"time_24h": dt.strftime("%H:%M:%S")
}
}]
```
---
## Module 3: re - Regular Expressions
**Common** - Pattern matching, text extraction, validation.
### Pattern Matching
```python
import re
text = "Email: alice@example.com, Phone: 555-1234"
# Find email
email_match = re.search(r'\b[\w.-]+@[\w.-]+\.\w+\b', text)
email = email_match.group(0) if email_match else None
# Find phone
phone_match = re.search(r'\d{3}-\d{4}', text)
phone = phone_match.group(0) if phone_match else None
return [{
"json": {
"email": email,
"phone": phone
}
}]
```
### Extract All Matches
```python
import re
text = "Tags: #python #automation #workflow #n8n"
# Find all hashtags
hashtags = re.findall(r'#(\w+)', text)
return [{
"json": {
"tags": hashtags,
"count": len(hashtags)
}
}]
```
### Replace Patterns
```python
import re
text = "Price: $99.99, Discount: $10.00"
# Remove dollar signs
cleaned = re.sub(r'\$', '', text)
# Replace multiple spaces with single space
normalized = re.sub(r'\s+', ' ', cleaned)
return [{
"json": {
"original": text,
"cleaned": cleaned,
"normalized": normalized
}
}]
```
### Validate Format
```python
import re
email = _input.first()["json"]["body"].get("email", "")
# Email validation pattern
email_pattern = r'^[\w.-]+@[\w.-]+\.\w+$'
is_valid = bool(re.match(email_pattern, email))
return [{
"json": {
"email": email,
"valid": is_valid
}
}]
```
### Split on Pattern
```python
import re
text = "apple,banana;orange|grape"
# Split on multiple delimiters
items = re.split(r'[,;|]', text)
# Clean up whitespace
items = [item.strip() for item in items]
return [{
"json": {
"items": items,
"count": len(items)
}
}]
```
---
## Module 4: base64 - Encoding/Decoding
**Common** - Encode binary data, API authentication.
### Encode String to Base64
```python
import base64
text = "Hello, World!"
# Encode to base64
encoded_bytes = base64.b64encode(text.encode('utf-8'))
encoded_string = encoded_bytes.decode('utf-8')
return [{
"json": {
"original": text,
"encoded": encoded_string
}
}]
```
### Decode Base64 to String
```python
import base64
encoded = "SGVsbG8sIFdvcmxkIQ=="
# Decode from base64
decoded_bytes = base64.b64decode(encoded)
decoded_string = decoded_bytes.decode('utf-8')
return [{
"json": {
"encoded": encoded,
"decoded": decoded_string
}
}]
```
### Basic Auth Header
```python
import base64
username = "admin"
password = "secret123"
# Create Basic Auth header
credentials = f"{username}:{password}"
encoded = base64.b64encode(credentials.encode('utf-8')).decode('utf-8')
auth_header = f"Basic {encoded}"
return [{
"json": {
"authorization": auth_header
}
}]
```
---
## Module 5: hashlib - Hashing
**Common** - Generate checksums, hash passwords, create IDs.
### MD5 Hash
```python
import hashlib
text = "Hello, World!"
# Generate MD5 hash
md5_hash = hashlib.md5(text.encode('utf-8')).hexdigest()
return [{
"json": {
"original": text,
"md5": md5_hash
}
}]
```
### SHA256 Hash
```python
import hashlib
data = _input.first()["json"]["body"]
text = data.get("password", "")
# Generate SHA256 hash (more secure than MD5)
sha256_hash = hashlib.sha256(text.encode('utf-8')).hexdigest()
return [{
"json": {
"hashed": sha256_hash
}
}]
```
### Generate Unique ID
```python
import hashlib
from datetime import datetime
# Create unique ID from multiple values
unique_string = f"{datetime.now().isoformat()}-{_json.get('user_id', 'unknown')}"
unique_id = hashlib.sha256(unique_string.encode('utf-8')).hexdigest()[:16]
return [{
"json": {
"id": unique_id,
"generated_at": datetime.now().isoformat()
}
}]
```
---
## Module 6: urllib.parse - URL Operations
**Common** - Parse URLs, encode parameters.
### Parse URL
```python
from urllib.parse import urlparse
url = "https://example.com/path?key=value&foo=bar#section"
parsed = urlparse(url)
return [{
"json": {
"scheme": parsed.scheme, # "https"
"netloc": parsed.netloc, # "example.com"
"path": parsed.path, # "/path"
"query": parsed.query, # "key=value&foo=bar"
"fragment": parsed.fragment # "section"
}
}]
```
### URL Encode Parameters
```python
from urllib.parse import urlencode
params = {
"name": "Alice Smith",
"email": "alice@example.com",
"message": "Hello, World!"
}
# Encode parameters for URL
encoded = urlencode(params)
return [{
"json": {
"query_string": encoded,
"full_url": f"https://api.example.com/submit?{encoded}"
}
}]
```
### Parse Query String
```python
from urllib.parse import parse_qs
query_string = "name=Alice&age=30&tags=python&tags=n8n"
# Parse query string
params = parse_qs(query_string)
return [{
"json": {
"name": params.get("name", [""])[0],
"age": int(params.get("age", ["0"])[0]),
"tags": params.get("tags", [])
}
}]
```
### URL Encode/Decode Strings
```python
from urllib.parse import quote, unquote
text = "Hello, World! 你好"
# URL encode
encoded = quote(text)
# URL decode
decoded = unquote(encoded)
return [{
"json": {
"original": text,
"encoded": encoded,
"decoded": decoded
}
}]
```
---
## Module 7: math - Mathematical Operations
**Moderately useful** - Advanced math functions.
### Basic Math Functions
```python
import math
number = 16.7
return [{
"json": {
"ceiling": math.ceil(number), # 17
"floor": math.floor(number), # 16
"rounded": round(number), # 17
"square_root": math.sqrt(16), # 4.0
"power": math.pow(2, 3), # 8.0
"absolute": math.fabs(-5.5) # 5.5
}
}]
```
### Trigonometry
```python
import math
angle_degrees = 45
angle_radians = math.radians(angle_degrees)
return [{
"json": {
"sine": math.sin(angle_radians),
"cosine": math.cos(angle_radians),
"tangent": math.tan(angle_radians),
"pi": math.pi,
"e": math.e
}
}]
```
### Logarithms
```python
import math
number = 100
return [{
"json": {
"log10": math.log10(number), # 2.0
"natural_log": math.log(number), # 4.605...
"log2": math.log2(number) # 6.644...
}
}]
```
---
## Module 8: random - Random Numbers
**Moderately useful** - Generate random data, sampling.
### Random Numbers
```python
import random
return [{
"json": {
"random_float": random.random(), # 0.0 to 1.0
"random_int": random.randint(1, 100), # 1 to 100
"random_range": random.randrange(0, 100, 5) # 0, 5, 10, ..., 95
}
}]
```
### Random Choice
```python
import random
colors = ["red", "green", "blue", "yellow"]
users = [{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}]
return [{
"json": {
"random_color": random.choice(colors),
"random_user": random.choice(users)
}
}]
```
### Shuffle List
```python
import random
items = [1, 2, 3, 4, 5]
shuffled = items.copy()
random.shuffle(shuffled)
return [{
"json": {
"original": items,
"shuffled": shuffled
}
}]
```
### Random Sample
```python
import random
items = list(range(1, 101))
# Get 10 random items without replacement
sample = random.sample(items, 10)
return [{
"json": {
"sample": sample,
"count": len(sample)
}
}]
```
---
## Module 9: statistics - Statistical Functions
**Moderately useful** - Calculate stats from data.
### Basic Statistics
```python
import statistics
numbers = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
return [{
"json": {
"mean": statistics.mean(numbers), # 55.0
"median": statistics.median(numbers), # 55.0
"mode": statistics.mode([1, 2, 2, 3]), # 2
"stdev": statistics.stdev(numbers), # 30.28...
"variance": statistics.variance(numbers) # 916.67...
}
}]
```
### Aggregate from Items
```python
import statistics
all_items = _input.all()
# Extract amounts
amounts = [item["json"].get("amount", 0) for item in all_items]
if amounts:
return [{
"json": {
"count": len(amounts),
"total": sum(amounts),
"average": statistics.mean(amounts),
"median": statistics.median(amounts),
"min": min(amounts),
"max": max(amounts),
"range": max(amounts) - min(amounts)
}
}]
else:
return [{"json": {"error": "No data"}}]
```
---
## Workarounds for Missing Libraries
### HTTP Requests (No requests library)
```python
# ❌ Can't use requests library
# import requests # ModuleNotFoundError!
# ✅ Use HTTP Request node instead
# Add HTTP Request node BEFORE Code node
# Access the response in Code node
response_data = _input.first()["json"]
return [{
"json": {
"status": response_data.get("status"),
"data": response_data.get("body"),
"processed": True
}
}]
```
### Data Processing (No pandas)
```python
# ❌ Can't use pandas
# import pandas as pd # ModuleNotFoundError!
# ✅ Use Python's built-in list comprehensions
all_items = _input.all()
# Filter
active_items = [
item for item in all_items
if item["json"].get("status") == "active"
]
# Group by
from collections import defaultdict
grouped = defaultdict(list)
for item in all_items:
category = item["json"].get("category", "other")
grouped[category].append(item["json"])
# Aggregate
import statistics
amounts = [item["json"].get("amount", 0) for item in all_items]
total = sum(amounts)
average = statistics.mean(amounts) if amounts else 0
return [{
"json": {
"active_count": len(active_items),
"grouped": dict(grouped),
"total": total,
"average": average
}
}]
```
### Database Operations (No drivers)
```python
# ❌ Can't use database drivers
# import psycopg2 # ModuleNotFoundError!
# import pymongo # ModuleNotFoundError!
# ✅ Use n8n database nodes instead
# Add Postgres/MySQL/MongoDB node BEFORE Code node
# Process results in Code node
db_results = _input.first()["json"]
return [{
"json": {
"record_count": len(db_results) if isinstance(db_results, list) else 1,
"processed": True
}
}]
```
---
## Complete Standard Library List
**Available** (commonly useful):
- json
- datetime, time
- re
- base64
- hashlib
- urllib.parse, urllib.request, urllib.error
- math
- random
- statistics
- collections (defaultdict, Counter, namedtuple)
- itertools
- functools
- operator
- string
- textwrap
**Available** (less common):
- os.path (path operations only)
- copy
- typing
- enum
- decimal
- fractions
**NOT Available** (external libraries):
- requests (HTTP)
- pandas (data analysis)
- numpy (numerical computing)
- bs4/beautifulsoup4 (HTML parsing)
- selenium (browser automation)
- psycopg2, pymongo, sqlalchemy (databases)
- flask, fastapi (web frameworks)
- pillow (image processing)
- openpyxl, xlsxwriter (Excel)
---
## Best Practices
### 1. Use Standard Library When Possible
```python
# ✅ GOOD: Use standard library
import json
import datetime
import re
data = _input.first()["json"]
processed = json.loads(data.get("json_string", "{}"))
return [{"json": processed}]
```
### 2. Fall Back to n8n Nodes
```python
# For operations requiring external libraries,
# use n8n nodes instead:
# - HTTP Request for API calls
# - Postgres/MySQL for databases
# - Extract from File for parsing
# Then process results in Code node
result = _input.first()["json"]
return [{"json": {"processed": result}}]
```
### 3. Combine Multiple Modules
```python
import json
import base64
import hashlib
from datetime import datetime
# Combine modules for complex operations
data = _input.first()["json"]["body"]
# Hash sensitive data
user_id = hashlib.sha256(data.get("email", "").encode()).hexdigest()[:16]
# Encode for storage
encoded_data = base64.b64encode(json.dumps(data).encode()).decode()
return [{
"json": {
"user_id": user_id,
"encoded_data": encoded_data,
"timestamp": datetime.now().isoformat()
}
}]
```
---
## Summary
**Most Useful Modules**:
1. json - Parse/generate JSON
2. datetime - Date operations
3. re - Regular expressions
4. base64 - Encoding
5. hashlib - Hashing
6. urllib.parse - URL operations
**Critical Limitation**:
- NO external libraries (requests, pandas, numpy, etc.)
**Recommended Approach**:
- Use **JavaScript** for 95% of use cases
- Use Python only when specifically needed
- Use n8n nodes for operations requiring external libraries
**See Also**:
- [SKILL.md](SKILL.md) - Python Code overview
- [DATA_ACCESS.md](DATA_ACCESS.md) - Data access patterns
- [COMMON_PATTERNS.md](COMMON_PATTERNS.md) - Production patterns
- [ERROR_PATTERNS.md](ERROR_PATTERNS.md) - Avoid common mistakes