--- description: Store agent-generated content for long-term memory argument-hint: --collection [options] --- Store agent-generated content (research, analysis, synthesized information) with rich metadata. Content is persisted to disk for re-indexing and full-text retrieval, then indexed to Qdrant for semantic search. **Storage Location:** `~/.arcaneum/agent-memory/{collection}/` **Options:** - --collection: Target collection (required) - --model: Embedding model (default: stella for documents) - --title: Document title (added to frontmatter) - --category: Document category (e.g., research, security, analysis) - --tags: Comma-separated tags - --metadata: Additional metadata as JSON - --chunk-size: Target chunk size in tokens (overrides model default) - --chunk-overlap: Overlap between chunks in tokens - --verbose: Show detailed progress - --json: Output in JSON format **Examples:** ```text /store analysis.md --collection Memory --title "Security Analysis" --category security /store - --collection Research --title "Findings" --tags "research,important" ``` **Execution:** ```bash cd ${CLAUDE_PLUGIN_ROOT} arc store $ARGUMENTS ``` **How It Works:** 1. Accept content from file or stdin (`-`) 2. Extract/add rich metadata (title, category, tags, custom fields) 3. Semantic chunking preserving document structure 4. Generate embeddings (stella default: 1024D for documents) 5. Upload to Qdrant with metadata 6. Persist to disk: `~/.arcaneum/agent-memory/{collection}/{date}_{agent}_{slug}.md` 7. Generate YAML frontmatter with injection metadata (injection_id, injected_at, injected_by) **Persistence:** Content is always persisted for durability. This enables: - Re-indexing: Update embeddings without losing original content - Full-text retrieval: Access complete original documents - Audit trail: Track what was stored and when (injection_id, timestamps) **Filename Format:** `YYYYMMDD_agent_slug.md` (e.g., `20251030_claude_security-analysis.md`) **Use Cases:** - AI agents storing research findings - Preserving analysis results - Collecting synthesized information - Building knowledge bases from agent workflows **Default Model:** - stella (1024D, document-optimized) **Related Commands:** - /collection create - Create collection before storing (use --type markdown) - /search semantic - Search stored content - /index markdown - For indexing existing markdown directories (different use case) **Implementation:** - RDR-014: Markdown content indexing - arcaneum-204: Direct injection persistence module