--- description: Manage embedding models argument-hint: [options] --- Manage and view available embedding models for vector search. **Subcommands:** - list: List all available embedding models with details **Options:** - --json: Output in JSON format **Examples:** ```text /models list /models list --json ``` **Execution:** ```bash cd ${CLAUDE_PLUGIN_ROOT} arc models $ARGUMENTS ``` **Available Models:** The list command shows: - Model name (for --model flags) - Dimensions (vector size) - Backend (fastembed, sentence-transformers) - Best use case (PDFs, code, general) - Model ID (HuggingFace identifier) **Current Models:** **For Documents/PDFs:** - **stella** (1024D): Best for documents, PDFs, general text - **bge-large** (1024D): General purpose, high quality - **modernbert** (1024D): Newer general-purpose model **For Source Code:** - **jina-code** (768D): Optimized for code, cross-language - **jina-v2-code** (768D): Alternative code model **For General Use:** - **bge** (1024D): High-quality general embeddings - **bge-small** (384D): Faster, smaller, lower quality **Model Selection Tips:** 1. **Match content type:** - PDFs/docs → stella or modernbert - Source code → jina-code - Mixed → stella or bge 2. **Consider dimensions:** - Higher dimensions (1024D) = better quality, more storage - Lower dimensions (384D, 768D) = faster, less storage 3. **Backend matters:** - fastembed: Faster, optimized, limited models - sentence-transformers: More models, HuggingFace ecosystem 4. **Collection consistency:** - Use same model for all documents in a collection - Cannot mix dimensions in one vector space **Downloading Models:** Models auto-download on first use (~1-2GB): - Cached in ~/.arcaneum/models/ - Reused across indexing operations - Use --offline flag to require cached models **Pre-download for offline use:** ```bash python -c "from sentence_transformers import SentenceTransformer; SentenceTransformer('jinaai/jina-embeddings-v2-base-code')" ``` **Related Commands:** - /collection create - Create collection with specific model - /index pdf - Index with model selection - /index code - Index with model selection **Implementation:** - RDR-002: Embedding client architecture - RDR-006: Model listing CLI - arcaneum-142: Multi-backend support