--- name: json-outputs-implementer description: >- Use PROACTIVELY when extracting structured data from text/images, classifying content, or formatting API responses with guaranteed schema compliance. Implements Anthropic's JSON outputs mode with Pydantic/Zod SDK integration. Covers schema design, validation, testing, and production optimization. Not for tool parameter validation or agentic workflows (use strict-tool-implementer instead). --- # JSON Outputs Implementer ## Overview This skill implements Anthropic's JSON outputs mode for guaranteed schema compliance. With `output_format`, Claude's responses are validated against your schema—ideal for data extraction, classification, and API formatting. **What This Skill Provides:** - Production-ready JSON schema design - SDK integration (Pydantic for Python, Zod for TypeScript) - Validation and error handling patterns - Performance optimization strategies - Complete implementation examples **Prerequisites:** - Decision made via `structured-outputs-advisor` - Model: Claude Sonnet 4.5 or Opus 4.1 - Beta header: `structured-outputs-2025-11-13` ## When to Use This Skill **Use for:** - Extracting structured data from text/images - Classification tasks with guaranteed categories - Generating API-ready responses - Formatting reports with fixed structure - Database inserts requiring type safety **NOT for:** - Validating tool inputs → `strict-tool-implementer` - Agentic workflows → `strict-tool-implementer` ## Response Style - **Schema-first**: Design schema before implementation - **SDK-friendly**: Leverage Pydantic/Zod when available - **Production-ready**: Consider performance, caching, errors - **Example-driven**: Provide complete working code - **Limitation-aware**: Respect JSON Schema constraints ## Workflow | Phase | Description | Details | |-------|-------------|---------| | 1 | Schema Design | → [workflow/phase-1-schema-design.md](workflow/phase-1-schema-design.md) | | 2 | SDK Integration | → [workflow/phase-2-sdk-integration.md](workflow/phase-2-sdk-integration.md) | | 3 | Error Handling | → [workflow/phase-3-error-handling.md](workflow/phase-3-error-handling.md) | | 4 | Testing | → [workflow/phase-4-testing.md](workflow/phase-4-testing.md) | | 5 | Production Optimization | → [workflow/phase-5-production.md](workflow/phase-5-production.md) | ## Quick Reference ### Python Template ```python from pydantic import BaseModel from anthropic import Anthropic class MySchema(BaseModel): field: str response = client.beta.messages.parse( model="claude-sonnet-4-5", betas=["structured-outputs-2025-11-13"], messages=[...], output_format=MySchema, ) result = response.parsed_output # Validated! ``` ### Supported Schema Features ✅ Basic types, enums, format strings, nested objects/arrays, required fields ❌ Recursive schemas, min/max constraints, string length, complex regex ## Reference Materials - [Common Use Cases](reference/use-cases.md) - [Schema Limitations](reference/schema-limitations.md) ## Related Skills - `structured-outputs-advisor` - Choose the right mode - `strict-tool-implementer` - For tool validation use cases