# Phase 1: Discovery & Language Selection **Purpose**: Understand what the user wants to build and choose the right SDK ## Questions to Ask ### 1. Server Purpose - "What data source, tools, or workflows do you want to expose to AI?" - Examples: "Access PostgreSQL database", "Search Jira tickets", "Format code" ### 2. Target AI Application - Claude Desktop (most common) - Custom AI application - Multiple clients ### 3. Programming Language Preference - **TypeScript/Node.js** (recommended for web APIs, JavaScript ecosystem) - **Python** (recommended for data processing, ML workflows) - **Java/Spring AI** (enterprise Java applications) - **Kotlin** (Android/JVM applications) - **C#/.NET** (Windows/Azure applications) ### 4. Capability Types Needed - **Tools**: Functions AI can call (e.g., "get_weather", "search_database") - **Resources**: Data AI can read (e.g., file contents, API responses) - **Prompts**: Specialized templates for common tasks ## Output Clear understanding of: - Server purpose - Language choice - Capabilities needed (tools/resources/prompts) ## Transition Proceed to Phase 2 (Project Structure Generation)