Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:16:25 +08:00
commit c50a3be78a
28 changed files with 9866 additions and 0 deletions

View File

@@ -0,0 +1,444 @@
# Meta-Automation Architect - System Overview
A comprehensive skill that analyzes projects and generates tailored automation systems with parallel subagents, custom skills, commands, and hooks.
## Quick Links
- **[README.md](README.md)** - Main usage guide
- **[SKILL.md](SKILL.md)** - Full skill definition
- **[Communication Protocol](references/COMMUNICATION_PROTOCOL.md)** - Agent Communication Protocol (ACP) specification
- **[Examples](examples/)** - Complete examples for different project types
- **[Templates](templates/)** - Templates for generated artifacts
## Directory Structure
```
.claude/skills/meta-automation-architect/
├── SKILL.md # Main skill definition
├── README.md # Usage guide
├── OVERVIEW.md # This file
├── scripts/ # Generation scripts
│ ├── detect_project.py # Project analysis
│ ├── generate_agents.py # Agent generation (11 templates)
│ └── generate_coordinator.py # Coordinator generation
├── templates/ # Output templates
│ ├── example-skill-template.md # Skill template structure
│ ├── example-command-template.md # Command template structure
│ └── example-hook-template.py # Hook template structure
├── examples/ # Complete examples
│ ├── EXAMPLE_WEB_APP.md # Next.js web app automation
│ └── EXAMPLE_PYTHON_CLI.md # Python CLI tool automation
└── references/ # Technical docs
└── COMMUNICATION_PROTOCOL.md # ACP specification
```
## What This Meta-Skill Does
### 1. Interactive Discovery
- Analyzes project structure and tech stack
- Provides data-driven recommendations
- Asks targeted questions with smart defaults
- Never guesses - always validates with user
### 2. Generates Parallel Subagent System
- **Analysis Agents** - Run in parallel to analyze different domains
- **Implementation Agents** - Generate automation artifacts
- **Validation Agents** - Test and validate the system
- **Coordinator Agent** - Orchestrates the entire workflow
### 3. Creates Complete Automation
- **Custom Agents** - Specialized for project patterns
- **Skills** - Auto-invoked capabilities
- **Commands** - Slash commands for workflows
- **Hooks** - Event-driven automation
- **MCP Integrations** - External service connections
### 4. Enables Agent Communication
Uses **Agent Communication Protocol (ACP)** for coordination:
- File-based communication at `.claude/agents/context/{session-id}/`
- Coordination file for status tracking
- Message bus for event transparency
- Standardized reports for findings
- Data artifacts for detailed exchange
## Available Agent Templates
### Analysis Agents (Run in Parallel)
1. **security-analyzer** - Security vulnerabilities, auth flaws, secret exposure
2. **performance-analyzer** - Bottlenecks, inefficient algorithms, optimization opportunities
3. **code-quality-analyzer** - Code complexity, duplication, maintainability
4. **dependency-analyzer** - Outdated packages, vulnerabilities, conflicts
5. **documentation-analyzer** - Documentation completeness and quality
### Implementation Agents
6. **skill-generator** - Creates custom skills from findings
7. **command-generator** - Creates slash commands for workflows
8. **hook-generator** - Creates automation hooks
9. **mcp-configurator** - Configures external integrations
### Validation Agents
10. **integration-tester** - Validates all components work together
11. **documentation-validator** - Ensures comprehensive documentation
## Agent Communication Protocol (ACP)
### Core Concept
Parallel agents with isolated contexts communicate via structured files:
```
.claude/agents/context/{session-id}/
├── coordination.json # Status tracking
├── messages.jsonl # Event log (append-only)
├── reports/ # Agent outputs
│ └── {agent-name}.json
└── data/ # Shared artifacts
```
### Key Features
-**Asynchronous** - Agents don't block each other
-**Discoverable** - Any agent can read any report
-**Persistent** - Survives crashes
-**Transparent** - Complete audit trail
-**Orchestratable** - Coordinator manages dependencies
See [COMMUNICATION_PROTOCOL.md](references/COMMUNICATION_PROTOCOL.md) for full specification.
## Usage Patterns
### Basic Invocation
```
"Set up automation for my project"
```
### Specific Project Type
```
"Create automation for my Next.js web app"
"Generate automation for my Python CLI tool"
"Set up automation for my data science workflow"
```
### With Priorities
```
"Focus automation on testing and security"
"Prioritize documentation and code quality"
```
### With Scope
```
"Create comprehensive automation with 8 agents"
"Generate basic automation (3-4 agents)"
```
## Example Output
For a typical web application, generates:
```
.claude/
├── agents/
│ ├── security-analyzer.md
│ ├── performance-analyzer.md
│ ├── code-quality-analyzer.md
│ ├── skill-generator.md
│ ├── command-generator.md
│ └── automation-coordinator.md
├── skills/
│ ├── tdd-workflow/
│ ├── api-doc-generator/
│ └── security-checker/
├── commands/
│ ├── test-fix.md
│ ├── security-scan.md
│ └── perf-check.md
├── hooks/
│ ├── security_validation.py
│ └── run_tests.py
├── settings.json (updated)
├── AUTOMATION_README.md
└── QUICK_REFERENCE.md
```
Plus complete session data:
```
.claude/agents/context/{session-id}/
├── coordination.json
├── messages.jsonl
├── reports/
│ ├── security-analyzer.json
│ ├── performance-analyzer.json
│ └── ...
└── data/
└── ...
```
## Workflow Phases
### Phase 1: Discovery (Interactive)
- Project type detection with confidence scores
- Tech stack analysis
- Team size and workflow questions
- Pain point identification
- Priority setting
- Agent count recommendation
### Phase 2: Setup
- Generate unique session ID
- Create communication directory structure
- Initialize coordination file
- Export environment variables
### Phase 3: Analysis (Parallel)
- Launch analysis agents concurrently
- Each agent analyzes specific domain
- Agents log progress to message bus
- Generate standardized reports
- Update coordination status
### Phase 4: Synthesis
- Coordinator reads all reports
- Aggregates findings
- Identifies patterns
- Makes decisions on what to generate
### Phase 5: Implementation (Parallel)
- Launch implementation agents
- Generate skills, commands, hooks
- Configure MCP servers
- Create artifacts
### Phase 6: Validation (Sequential)
- Test all components
- Validate documentation
- Ensure everything works
### Phase 7: Delivery
- Generate documentation
- Create usage guides
- Report to user
## Key Scripts
### `detect_project.py`
```python
# Analyzes project to determine:
# - Project type (web app, CLI, data science, etc.)
# - Tech stack (frameworks, languages)
# - Pain points (testing, docs, dependencies)
# - Statistics (file counts, test coverage)
python scripts/detect_project.py
```
### `generate_agents.py`
```python
# Generates specialized agents with communication protocol
# Available types: security-analyzer, performance-analyzer, etc.
python scripts/generate_agents.py \
--session-id "abc-123" \
--agent-type "security-analyzer" \
--output ".claude/agents/security-analyzer.md"
```
### `generate_coordinator.py`
```python
# Creates coordinator agent that orchestrates workflow
python scripts/generate_coordinator.py \
--session-id "abc-123" \
--agents "security,performance,quality" \
--output ".claude/agents/coordinator.md"
```
## Benefits
### For Solo Developers
- Automates tedious documentation and testing
- Provides instant code quality feedback
- Reduces context switching
- Focuses on writing code, not boilerplate
### For Small Teams
- Standardizes workflows across team
- Ensures consistent code quality
- Automates code reviews
- Improves onboarding with documentation
### For Large Projects
- Comprehensive analysis across domains
- Identifies technical debt systematically
- Provides actionable recommendations
- Scales with multiple parallel agents
## Customization
All generated artifacts can be customized:
- **Agents** - Edit `.claude/agents/{agent-name}.md`
- **Skills** - Modify `.claude/skills/{skill-name}/SKILL.md`
- **Commands** - Update `.claude/commands/{command-name}.md`
- **Hooks** - Change `.claude/hooks/{hook-name}.py`
- **Settings** - Adjust `.claude/settings.json`
## Monitoring & Debugging
### Watch Agent Progress
```bash
watch -n 2 'cat .claude/agents/context/*/coordination.json | jq ".agents"'
```
### Follow Live Events
```bash
tail -f .claude/agents/context/*/messages.jsonl | jq
```
### Check Reports
```bash
ls .claude/agents/context/*/reports/
cat .claude/agents/context/*/reports/security-analyzer.json | jq
```
### Aggregate Findings
```bash
jq -s 'map(.findings[]) | map(select(.severity == "high"))' \
.claude/agents/context/*/reports/*.json
```
## Best Practices
### When Invoking
1. Let the skill analyze your project first
2. Answer questions honestly
3. Use recommendations when unsure
4. Start with moderate agent count
5. Review generated automation
### After Generation
1. Read AUTOMATION_README.md
2. Try example invocations
3. Customize for your needs
4. Review session logs to understand decisions
5. Iterate based on usage
### For Maintenance
1. Review agent reports periodically
2. Update skills as patterns evolve
3. Add new commands for new workflows
4. Adjust hooks as needed
5. Keep documentation current
## Technical Details
### Requirements
- Python 3.8+
- Claude Code with Task tool support
- Write access to `.claude/` directory
### Dependencies
Scripts use only Python standard library:
- `json` - JSON parsing
- `subprocess` - Git analysis
- `pathlib` - File operations
- `argparse` - CLI parsing
### Performance
- Analysis phase: 3-5 minutes (parallel execution)
- Implementation phase: 2-3 minutes (parallel execution)
- Validation phase: 1-2 minutes (sequential)
- **Total: ~10-15 minutes** for complete automation system
### Scalability
- 2-3 agents: Basic projects, solo developers
- 4-6 agents: Medium projects, small teams
- 7-10 agents: Large projects, comprehensive coverage
- 10+ agents: Enterprise projects, all domains
## Examples
### Web Application (Next.js)
See [EXAMPLE_WEB_APP.md](examples/EXAMPLE_WEB_APP.md)
- 6 agents (4 analysis, 2 implementation)
- 3 skills (TDD workflow, API docs, security checker)
- 3 commands (test-fix, security-scan, perf-check)
- 2 hooks (security validation, run tests)
- GitHub MCP integration
### Python CLI Tool
See [EXAMPLE_PYTHON_CLI.md](examples/EXAMPLE_PYTHON_CLI.md)
- 4 agents (2 analysis, 2 implementation)
- 2 skills (docstring generator, CLI test helper)
- 2 commands (test-cov, release-prep)
- 1 hook (auto-lint Python)
- Focused on documentation and testing
## Related Claude Code Features
This meta-skill leverages:
- **Task Tool** - For parallel agent execution
- **Skills System** - Creates auto-invoked capabilities
- **Commands** - Creates user-invoked shortcuts
- **Hooks** - Enables event-driven automation
- **MCP** - Connects to external services
## Support & Troubleshooting
### Check Session Logs
```bash
# Review what happened
cat .claude/agents/context/{session-id}/messages.jsonl | jq
# Find errors
jq 'select(.type == "error")' .claude/agents/context/{session-id}/messages.jsonl
```
### Agent Failed
```bash
# Check status
jq '.agents | to_entries | map(select(.value.status == "failed"))' \
.claude/agents/context/{session-id}/coordination.json
# Options:
# 1. Retry the agent
# 2. Continue without it
# 3. Manual intervention
```
### Missing Reports
```bash
# List what was generated
ls .claude/agents/context/{session-id}/reports/
# Check if agent completed
jq '.agents["agent-name"]' \
.claude/agents/context/{session-id}/coordination.json
```
## Future Enhancements
Potential additions:
- Language-specific analyzers (Go, Rust, Java)
- CI/CD integration agents
- Database optimization agent
- API design analyzer
- Accessibility checker
- Performance profiling agent
- Machine learning workflow agent
## License & Attribution
Part of the Claude Code ecosystem.
Generated with Meta-Automation Architect skill.
---
**Ready to use?** Simply say: `"Set up automation for my project"`
The meta-skill will guide you through the entire process with smart recommendations and generate a complete, customized automation system!