6.1 KiB
6.1 KiB
name, description
| name | description |
|---|---|
| r-development | Modern R development practices emphasizing tidyverse patterns (dplyr 1.1 and later, native pipe, join_by, .by grouping), rlang metaprogramming, performance optimization, and package development. Use when Claude needs to write R code, create R packages, optimize R performance, or provide R programming guidance. |
R Development
This skill provides comprehensive guidance for modern R development, emphasizing current best practices with tidyverse, performance optimization, and professional package development.
Core Principles
- Use modern tidyverse patterns - Prioritize dplyr 1.1+ features, native pipe, and current APIs
- Profile before optimizing - Use profvis and bench to identify real bottlenecks
- Write readable code first - Optimize only when necessary and after profiling
- Follow tidyverse style guide - Consistent naming, spacing, and structure
Modern Tidyverse Essentials
Native Pipe (|> not %>%)
Always use native pipe |> instead of magrittr %>% (R 4.1+):
# Modern
data |>
filter(year >= 2020) |>
summarise(mean_value = mean(value))
# Avoid legacy pipe
data %>% filter(year >= 2020)
Join Syntax (dplyr 1.1+)
Use join_by() for all joins:
# Modern join syntax with equality
transactions |>
inner_join(companies, by = join_by(company == id))
# Inequality joins
transactions |>
inner_join(companies, join_by(company == id, year >= since))
# Rolling joins (closest match)
transactions |>
inner_join(companies, join_by(company == id, closest(year >= since)))
Control match behavior:
# Expect 1:1 matches
inner_join(x, y, by = join_by(id), multiple = "error")
# Ensure all rows match
inner_join(x, y, by = join_by(id), unmatched = "error")
Per-Operation Grouping with .by
Use .by instead of group_by() |> ... |> ungroup():
# Modern approach (always returns ungrouped)
data |>
summarise(mean_value = mean(value), .by = category)
# Multiple grouping variables
data |>
summarise(total = sum(revenue), .by = c(company, year))
Column Operations
Use modern column selection and transformation functions:
# pick() for column selection in data-masking contexts
data |>
summarise(
n_x_cols = ncol(pick(starts_with("x"))),
n_y_cols = ncol(pick(starts_with("y")))
)
# across() for applying functions to multiple columns
data |>
summarise(across(where(is.numeric), mean, .names = "mean_{.col}"), .by = group)
# reframe() for multi-row results per group
data |>
reframe(quantiles = quantile(x, c(0.25, 0.5, 0.75)), .by = group)
rlang Metaprogramming
For comprehensive rlang patterns, see references/rlang-patterns.md.
Quick Reference
{{}}- Forward function arguments to data-masking functions!!- Inject single expressions or values!!!- Inject multiple arguments from a list.data[[]]- Access columns by name (character vectors)pick()- Select columns inside data-masking functions
Example function with embracing:
my_summary <- function(data, group_var, summary_var) {
data |>
summarise(mean_val = mean({{ summary_var }}), .by = {{ group_var }})
}
Performance Optimization
For detailed performance guidance, see references/performance.md.
Key Strategies
- Profile first: Use
profvis::profvis()andbench::mark() - Vectorize operations: Avoid loops when vectorized alternatives exist
- Use dtplyr: For large data operations (lazy evaluation with data.table backend)
- Parallel processing: Use
furrr::future_map()for parallelizable work - Memory efficiency: Pre-allocate, use appropriate data types
Quick example:
# Profile code
profvis::profvis({
result <- data |>
complex_operation() |>
another_operation()
})
# Benchmark alternatives
bench::mark(
approach_1 = method1(data),
approach_2 = method2(data),
check = FALSE
)
Package Development
For complete package development guidance, see references/package-development.md.
Quick Guidelines
API Design:
- Use
.byparameter for per-operation grouping - Use
{{}}for column arguments - Return tibbles consistently
- Validate user-facing function inputs thoroughly
Dependencies:
- Add dependencies for significant functionality gains
- Core tidyverse packages usually worth including: dplyr, purrr, stringr, tidyr
- Minimize dependencies for widely-used packages
Testing:
- Unit tests for individual functions
- Integration tests for workflows
- Test edge cases and error conditions
Documentation:
- Document all exported functions
- Provide usage examples
- Explain non-obvious parameter interactions
Common Migration Patterns
Base R → Tidyverse
# Data manipulation
subset(data, condition) → filter(data, condition)
data[order(data$x), ] → arrange(data, x)
aggregate(x ~ y, data, mean) → summarise(data, mean(x), .by = y)
# Functional programming
sapply(x, f) → map(x, f) # type-stable
lapply(x, f) → map(x, f)
# Strings
grepl("pattern", text) → str_detect(text, "pattern")
gsub("old", "new", text) → str_replace_all(text, "old", "new")
Old → New Tidyverse
# Pipes
%>% → |>
# Grouping
group_by() |> ... |> ungroup() → summarise(..., .by = x)
# Joins
by = c("a" = "b") → by = join_by(a == b)
# Reshaping
gather()/spread() → pivot_longer()/pivot_wider()
Additional Resources
- rlang patterns: See references/rlang-patterns.md for comprehensive data-masking and metaprogramming guidance
- Performance optimization: See references/performance.md for profiling, benchmarking, and optimization strategies
- Package development: See references/package-development.md for complete package creation guidance
- Object systems: See references/object-systems.md for S3, S4, S7, R6, and vctrs guidance