Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:02:37 +08:00
commit c1d9dee646
38 changed files with 11210 additions and 0 deletions

View File

@@ -0,0 +1,404 @@
---
title: "BioGeoBEARS Biogeographic Analysis"
author: "Generated by Claude Code"
date: "`r Sys.Date()`"
output:
html_document:
toc: true
toc_float: true
code_folding: show
theme: flatly
params:
tree_file: "tree.nwk"
geog_file: "geography.data"
max_range_size: 4
models: "DEC,DEC+J,DIVALIKE,DIVALIKE+J"
output_dir: "results"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE)
library(BioGeoBEARS)
library(ape)
library(knitr)
library(kableExtra)
```
# Analysis Parameters
```{r parameters, echo=FALSE}
params_df <- data.frame(
Parameter = c("Tree file", "Geography file", "Max range size", "Models to test", "Output directory"),
Value = c(params$tree_file, params$geog_file, params$max_range_size, params$models, params$output_dir)
)
kable(params_df, caption = "Analysis Parameters") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
```
# Input Data
## Phylogenetic Tree
```{r load-tree}
trfn <- params$tree_file
tr <- read.tree(trfn)
cat(paste("Number of tips:", length(tr$tip.label), "\n"))
cat(paste("Tree is rooted:", is.rooted(tr), "\n"))
cat(paste("Tree is ultrametric:", is.ultrametric(tr), "\n"))
# Plot tree
plot(tr, cex = 0.6, main = "Input Phylogeny")
```
## Geographic Distribution Data
```{r load-geography}
geogfn <- params$geog_file
tipranges <- getranges_from_LagrangePHYLIP(lgdata_fn = geogfn)
cat(paste("Number of species:", nrow(tipranges@df), "\n"))
cat(paste("Number of areas:", ncol(tipranges@df), "\n"))
cat(paste("Area names:", paste(names(tipranges@df), collapse = ", "), "\n\n"))
# Display geography matrix
kable(tipranges@df, caption = "Species Distribution Matrix (1 = present, 0 = absent)") %>%
kable_styling(bootstrap_options = c("striped", "hover"), font_size = 10) %>%
scroll_box(height = "400px")
```
## State Space Setup
```{r state-space}
max_range_size <- params$max_range_size
numareas <- ncol(tipranges@df)
num_states <- numstates_from_numareas(numareas = numareas,
maxareas = max_range_size,
include_null_range = TRUE)
cat(paste("Maximum range size:", max_range_size, "\n"))
cat(paste("Number of possible states:", num_states, "\n"))
```
# Model Fitting
```{r setup-output}
# Create output directory
if (!dir.exists(params$output_dir)) {
dir.create(params$output_dir, recursive = TRUE)
}
# Parse models to run
models_to_run <- unlist(strsplit(params$models, ","))
models_to_run <- trimws(models_to_run)
cat("Models to fit:\n")
for (model in models_to_run) {
cat(paste(" -", model, "\n"))
}
```
```{r model-fitting, results='hide'}
# Storage for results
results_list <- list()
model_comparison <- data.frame(
Model = character(),
LnL = numeric(),
nParams = integer(),
AIC = numeric(),
AICc = numeric(),
d = numeric(),
e = numeric(),
j = numeric(),
stringsAsFactors = FALSE
)
# Helper function to setup and run a model
run_biogeobears_model <- function(model_name, BioGeoBEARS_run_object) {
cat(paste("\n\nFitting model:", model_name, "\n"))
# Configure model based on name
if (grepl("DEC", model_name)) {
# DEC model (default settings)
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["s","type"] = "free"
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["v","type"] = "free"
} else if (grepl("DIVALIKE", model_name)) {
# DIVALIKE model (vicariance only, no subset sympatry)
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["s","type"] = "fixed"
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["s","init"] = 0.0
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["s","est"] = 0.0
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["v","type"] = "free"
} else if (grepl("BAYAREALIKE", model_name)) {
# BAYAREALIKE model (sympatry only, no vicariance)
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["s","type"] = "free"
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["v","type"] = "fixed"
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["v","init"] = 0.0
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["v","est"] = 0.0
}
# Add +J parameter if specified
if (grepl("\\+J", model_name)) {
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["j","type"] = "free"
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["j","init"] = 0.01
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["j","est"] = 0.01
} else {
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["j","type"] = "fixed"
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["j","init"] = 0.0
BioGeoBEARS_run_object$BioGeoBEARS_model_object@params_table["j","est"] = 0.0
}
# Run optimization
res <- bears_optim_run(BioGeoBEARS_run_object)
return(res)
}
# Base run object setup
BioGeoBEARS_run_object <- define_BioGeoBEARS_run()
BioGeoBEARS_run_object$trfn <- trfn
BioGeoBEARS_run_object$geogfn <- geogfn
BioGeoBEARS_run_object$max_range_size <- max_range_size
BioGeoBEARS_run_object$min_branchlength <- 0.000001
BioGeoBEARS_run_object$include_null_range <- TRUE
BioGeoBEARS_run_object$force_sparse <- FALSE
BioGeoBEARS_run_object$speedup <- TRUE
BioGeoBEARS_run_object$use_optimx <- TRUE
BioGeoBEARS_run_object$calc_ancprobs <- TRUE
BioGeoBEARS_run_object <- readfiles_BioGeoBEARS_run(BioGeoBEARS_run_object)
BioGeoBEARS_run_object <- calc_loglike_sp(BioGeoBEARS_run_object)
# Fit each model
for (model in models_to_run) {
tryCatch({
res <- run_biogeobears_model(model, BioGeoBEARS_run_object)
results_list[[model]] <- res
# Save result
save(res, file = file.path(params$output_dir, paste0(model, "_result.Rdata")))
# Extract parameters for comparison
params_table <- res$outputs@params_table
model_comparison <- rbind(model_comparison, data.frame(
Model = model,
LnL = res$outputs@loglikelihood,
nParams = sum(params_table$type == "free"),
AIC = res$outputs@AIC,
AICc = res$outputs@AICc,
d = params_table["d", "est"],
e = params_table["e", "est"],
j = params_table["j", "est"],
stringsAsFactors = FALSE
))
}, error = function(e) {
cat(paste("Error fitting model", model, ":", e$message, "\n"))
})
}
```
# Model Comparison
```{r model-comparison}
# Calculate AIC weights
if (nrow(model_comparison) > 0) {
model_comparison$delta_AIC <- model_comparison$AIC - min(model_comparison$AIC)
model_comparison$AIC_weight <- exp(-0.5 * model_comparison$delta_AIC) /
sum(exp(-0.5 * model_comparison$delta_AIC))
# Sort by AIC
model_comparison <- model_comparison[order(model_comparison$AIC), ]
kable(model_comparison, digits = 3,
caption = "Model Comparison (sorted by AIC)") %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
row_spec(1, bold = TRUE, background = "#d4edda") # Highlight best model
# Model selection summary
best_model <- model_comparison$Model[1]
cat(paste("\n\nBest model by AIC:", best_model, "\n"))
cat(paste("AIC weight:", round(model_comparison$AIC_weight[1], 3), "\n"))
}
```
# Ancestral Range Reconstruction
## Best Model: `r if(exists('best_model')) best_model else 'TBD'`
```{r plot-best-model, fig.width=10, fig.height=12}
if (exists('best_model') && best_model %in% names(results_list)) {
res_best <- results_list[[best_model]]
# Create plots directory
plots_dir <- file.path(params$output_dir, "plots")
if (!dir.exists(plots_dir)) {
dir.create(plots_dir, recursive = TRUE)
}
# Plot with pie charts
pdf(file.path(plots_dir, paste0(best_model, "_pie.pdf")), width = 10, height = 12)
analysis_titletxt <- paste("BioGeoBEARS:", best_model)
plot_BioGeoBEARS_results(
results_object = res_best,
analysis_titletxt = analysis_titletxt,
addl_params = list("j"),
plotwhat = "pie",
label.offset = 0.5,
tipcex = 0.7,
statecex = 0.7,
splitcex = 0.6,
titlecex = 0.8,
plotsplits = TRUE,
include_null_range = TRUE,
tr = tr,
tipranges = tipranges
)
dev.off()
# Also create text plot
pdf(file.path(plots_dir, paste0(best_model, "_text.pdf")), width = 10, height = 12)
plot_BioGeoBEARS_results(
results_object = res_best,
analysis_titletxt = analysis_titletxt,
addl_params = list("j"),
plotwhat = "text",
label.offset = 0.5,
tipcex = 0.7,
statecex = 0.7,
splitcex = 0.6,
titlecex = 0.8,
plotsplits = TRUE,
include_null_range = TRUE,
tr = tr,
tipranges = tipranges
)
dev.off()
# Display in notebook (pie chart version)
plot_BioGeoBEARS_results(
results_object = res_best,
analysis_titletxt = analysis_titletxt,
addl_params = list("j"),
plotwhat = "pie",
label.offset = 0.5,
tipcex = 0.7,
statecex = 0.7,
splitcex = 0.6,
titlecex = 0.8,
plotsplits = TRUE,
include_null_range = TRUE,
tr = tr,
tipranges = tipranges
)
cat(paste("\n\nPlots saved to:", plots_dir, "\n"))
}
```
# Parameter Estimates
```{r parameter-estimates, fig.width=10, fig.height=6}
if (nrow(model_comparison) > 0) {
# Extract base models (without +J)
base_models <- model_comparison[!grepl("\\+J", model_comparison$Model), ]
j_models <- model_comparison[grepl("\\+J", model_comparison$Model), ]
par(mfrow = c(1, 3))
# Plot d (dispersal) estimates
barplot(model_comparison$d, names.arg = model_comparison$Model,
main = "Dispersal Rate (d)", ylab = "Rate", las = 2, cex.names = 0.8,
col = ifelse(model_comparison$Model == best_model, "darkgreen", "lightblue"))
# Plot e (extinction) estimates
barplot(model_comparison$e, names.arg = model_comparison$Model,
main = "Extinction Rate (e)", ylab = "Rate", las = 2, cex.names = 0.8,
col = ifelse(model_comparison$Model == best_model, "darkgreen", "lightblue"))
# Plot j (founder-event) estimates for +J models
j_vals <- model_comparison$j
j_vals[j_vals == 0] <- NA
barplot(j_vals, names.arg = model_comparison$Model,
main = "Founder-event Rate (j)", ylab = "Rate", las = 2, cex.names = 0.8,
col = ifelse(model_comparison$Model == best_model, "darkgreen", "lightblue"))
}
```
# Likelihood Ratio Tests
```{r lrt-tests}
# Compare models with and without +J
if (nrow(model_comparison) > 0) {
lrt_results <- data.frame(
Comparison = character(),
Model1 = character(),
Model2 = character(),
LRT_statistic = numeric(),
df = integer(),
p_value = numeric(),
stringsAsFactors = FALSE
)
base_model_names <- c("DEC", "DIVALIKE", "BAYAREALIKE")
for (base in base_model_names) {
j_model <- paste0(base, "+J")
if (base %in% model_comparison$Model && j_model %in% model_comparison$Model) {
lnl_base <- model_comparison[model_comparison$Model == base, "LnL"]
lnl_j <- model_comparison[model_comparison$Model == j_model, "LnL"]
lrt_stat <- 2 * (lnl_j - lnl_base)
df <- 1 # One additional parameter (j)
p_val <- pchisq(lrt_stat, df = df, lower.tail = FALSE)
lrt_results <- rbind(lrt_results, data.frame(
Comparison = paste(base, "vs", j_model),
Model1 = base,
Model2 = j_model,
LRT_statistic = lrt_stat,
df = df,
p_value = p_val,
stringsAsFactors = FALSE
))
}
}
if (nrow(lrt_results) > 0) {
lrt_results$Significant <- ifelse(lrt_results$p_value < 0.05, "Yes*", "No")
kable(lrt_results, digits = 4,
caption = "Likelihood Ratio Tests (nested model comparisons)") %>%
kable_styling(bootstrap_options = c("striped", "hover"))
cat("\n* p < 0.05 indicates significant improvement with +J parameter\n")
}
}
```
# Session Info
```{r session-info}
sessionInfo()
```
# Outputs
All results have been saved to: **`r params$output_dir`**
Files generated:
- `[MODEL]_result.Rdata` - R data files with complete model results
- `plots/[MODEL]_pie.pdf` - Phylogeny with pie charts showing ancestral range probabilities
- `plots/[MODEL]_text.pdf` - Phylogeny with text labels showing most likely ancestral ranges
- `biogeobears_analysis_template.html` - This HTML report
To load a saved result in R:
```r
load("results/DEC+J_result.Rdata")
```