686 lines
20 KiB
Markdown
686 lines
20 KiB
Markdown
---
|
||
name: analyze:groups
|
||
description: Deep analysis of four-tier group behavior, collaboration patterns, and optimization recommendations
|
||
version: 7.0.0
|
||
category: analysis
|
||
---
|
||
|
||
# Analyze Groups Command
|
||
|
||
Perform comprehensive deep analysis of all four agent groups including collaboration patterns, bottlenecks, optimization opportunities, and actionable recommendations for improving group coordination and performance.
|
||
|
||
## What This Command Does
|
||
|
||
**Analyzes**:
|
||
1. **Group Collaboration Patterns** - How groups work together, communication patterns, handoff quality
|
||
2. **Performance Bottlenecks** - Where delays occur, which groups need optimization
|
||
3. **Specialization Effectiveness** - Whether groups are specializing appropriately
|
||
4. **Knowledge Flow Analysis** - How knowledge transfers between groups
|
||
5. **Decision Quality Analysis** - Group 2 decision-making effectiveness
|
||
6. **Validation Effectiveness** - Group 4 validation impact on quality
|
||
|
||
**Delivers**:
|
||
- Root cause analysis of performance issues
|
||
- Specific optimization recommendations
|
||
- Communication improvement strategies
|
||
- Specialization guidance
|
||
- Actionable next steps
|
||
|
||
## Execution Steps
|
||
|
||
### Step 1: Load Comprehensive Data
|
||
|
||
```python
|
||
from lib.group_collaboration_system import get_group_collaboration_stats, analyze_workflow_efficiency
|
||
from lib.group_performance_tracker import get_group_performance, compare_groups, analyze_workflow_efficiency as group_workflow
|
||
from lib.inter_group_knowledge_transfer import get_knowledge_transfer_stats, get_transfer_effectiveness
|
||
from lib.group_specialization_learner import get_specialization_profile, get_recommended_group_for_task, get_learning_insights
|
||
from lib.agent_feedback_system import get_feedback_stats
|
||
from lib.decision_explainer import get_all_explanations
|
||
from lib.proactive_suggester import get_statistics as get_suggestion_stats
|
||
|
||
# Gather all data for last 100 tasks
|
||
collaboration_stats = get_group_collaboration_stats()
|
||
workflow_efficiency = analyze_workflow_efficiency()
|
||
knowledge_effectiveness = get_transfer_effectiveness()
|
||
learning_insights = get_learning_insights()
|
||
suggestion_stats = get_suggestion_stats()
|
||
```
|
||
|
||
### Step 2: Analyze Group Collaboration Patterns
|
||
|
||
```python
|
||
def analyze_collaboration_patterns(collab_stats):
|
||
"""Identify collaboration patterns and issues"""
|
||
|
||
patterns_found = []
|
||
issues_found = []
|
||
|
||
# Pattern 1: Sequential Flow (Normal)
|
||
if collab_stats['group_1_to_2']['success_rate'] > 0.9 and \
|
||
collab_stats['group_2_to_3']['success_rate'] > 0.9 and \
|
||
collab_stats['group_3_to_4']['success_rate'] > 0.9:
|
||
patterns_found.append({
|
||
"pattern": "healthy_sequential_flow",
|
||
"description": "Groups collaborate sequentially with high success",
|
||
"status": "excellent"
|
||
})
|
||
|
||
# Pattern 2: Feedback Loop Effectiveness
|
||
feedback_loops = [
|
||
collab_stats.get('group_4_to_1', {}),
|
||
collab_stats.get('group_4_to_2', {}),
|
||
collab_stats.get('group_4_to_3', {})
|
||
]
|
||
|
||
avg_feedback_effectiveness = sum(loop.get('effectiveness', 0) for loop in feedback_loops) / 3
|
||
if avg_feedback_effectiveness < 0.7:
|
||
issues_found.append({
|
||
"issue": "weak_feedback_loops",
|
||
"severity": "medium",
|
||
"description": "Group 4 feedback not effectively improving other groups",
|
||
"recommendation": "Review feedback quality and actionability"
|
||
})
|
||
|
||
# Pattern 3: Bottleneck Detection
|
||
communication_times = {
|
||
"G1->G2": collab_stats['group_1_to_2'].get('avg_time_seconds', 0),
|
||
"G2->G3": collab_stats['group_2_to_3'].get('avg_time_seconds', 0),
|
||
"G3->G4": collab_stats['group_3_to_4'].get('avg_time_seconds', 0)
|
||
}
|
||
|
||
max_time = max(communication_times.values())
|
||
for flow, time in communication_times.items():
|
||
if time > max_time * 0.7: # More than 70% of max
|
||
issues_found.append({
|
||
"issue": "communication_bottleneck",
|
||
"severity": "high",
|
||
"location": flow,
|
||
"description": f"Communication delay in {flow}: {time}s",
|
||
"recommendation": f"Optimize {flow.split('->')[0]} output preparation"
|
||
})
|
||
|
||
return patterns_found, issues_found
|
||
```
|
||
|
||
### Step 3: Analyze Performance Bottlenecks
|
||
|
||
```python
|
||
def identify_bottlenecks():
|
||
"""Identify which groups are performance bottlenecks"""
|
||
|
||
bottlenecks = []
|
||
|
||
for group_num in [1, 2, 3, 4]:
|
||
perf = get_group_performance(group_num)
|
||
|
||
# Check success rate
|
||
if perf.get('success_rate', 1.0) < 0.8:
|
||
bottlenecks.append({
|
||
"group": group_num,
|
||
"issue": "low_success_rate",
|
||
"value": perf['success_rate'],
|
||
"severity": "high",
|
||
"recommendation": "Review group training and specialization"
|
||
})
|
||
|
||
# Check execution time
|
||
if perf.get('avg_execution_time', 0) > 300: # 5 minutes
|
||
bottlenecks.append({
|
||
"group": group_num,
|
||
"issue": "slow_execution",
|
||
"value": perf['avg_execution_time'],
|
||
"severity": "medium",
|
||
"recommendation": "Profile and optimize slow operations"
|
||
})
|
||
|
||
# Check quality output
|
||
if perf.get('avg_quality_score', 100) < 75:
|
||
bottlenecks.append({
|
||
"group": group_num,
|
||
"issue": "low_quality_output",
|
||
"value": perf['avg_quality_score'],
|
||
"severity": "high",
|
||
"recommendation": "Improve group capabilities or adjust expectations"
|
||
})
|
||
|
||
return bottlenecks
|
||
```
|
||
|
||
### Step 4: Analyze Specialization Effectiveness
|
||
|
||
```python
|
||
def analyze_specialization():
|
||
"""Check if groups are developing appropriate specializations"""
|
||
|
||
specialization_analysis = {}
|
||
|
||
for group_num in [1, 2, 3, 4]:
|
||
profile = get_specialization_profile(group_num)
|
||
|
||
specializations = profile.get('specializations', [])
|
||
task_count = profile.get('total_tasks', 0)
|
||
|
||
# Ideal: 3-5 clear specializations after 100+ tasks
|
||
if task_count < 50:
|
||
status = "insufficient_data"
|
||
recommendation = f"Need {50 - task_count} more tasks to identify specializations"
|
||
elif len(specializations) == 0:
|
||
status = "no_specialization"
|
||
recommendation = "Group not developing specializations - may need more diverse tasks"
|
||
elif len(specializations) < 3:
|
||
status = "emerging"
|
||
recommendation = "Specializations emerging - continue diverse task exposure"
|
||
elif len(specializations) <= 5:
|
||
status = "optimal"
|
||
recommendation = "Good specialization balance - maintain current task distribution"
|
||
else:
|
||
status = "over_specialized"
|
||
recommendation = "Too many specializations - may indicate lack of focus"
|
||
|
||
specialization_analysis[f"Group {group_num}"] = {
|
||
"status": status,
|
||
"specializations": specializations,
|
||
"task_count": task_count,
|
||
"recommendation": recommendation
|
||
}
|
||
|
||
return specialization_analysis
|
||
```
|
||
|
||
### Step 5: Analyze Knowledge Flow
|
||
|
||
```python
|
||
def analyze_knowledge_flow(knowledge_stats):
|
||
"""Analyze how knowledge flows between groups"""
|
||
|
||
flow_analysis = {
|
||
"total_knowledge": knowledge_stats.get('total_knowledge', 0),
|
||
"successful_transfers": knowledge_stats.get('successful_transfers', 0),
|
||
"transfer_success_rate": knowledge_stats.get('transfer_success_rate', 0),
|
||
"flow_patterns": []
|
||
}
|
||
|
||
# Identify dominant knowledge sources
|
||
sources = {}
|
||
for transfer in knowledge_stats.get('transfers', []):
|
||
source = transfer.get('source_group')
|
||
sources[source] = sources.get(source, 0) + 1
|
||
|
||
# Check if knowledge is distributed or concentrated
|
||
if sources:
|
||
max_source = max(sources.values())
|
||
if max_source > sum(sources.values()) * 0.6:
|
||
flow_analysis['flow_patterns'].append({
|
||
"pattern": "concentrated_source",
|
||
"description": f"Group {max(sources, key=sources.get)} is primary knowledge source ({max_source} items)",
|
||
"recommendation": "Encourage knowledge sharing from other groups"
|
||
})
|
||
else:
|
||
flow_analysis['flow_patterns'].append({
|
||
"pattern": "distributed_sources",
|
||
"description": "Knowledge well-distributed across groups",
|
||
"status": "healthy"
|
||
})
|
||
|
||
# Check transfer effectiveness
|
||
if flow_analysis['transfer_success_rate'] < 0.7:
|
||
flow_analysis['flow_patterns'].append({
|
||
"pattern": "low_transfer_effectiveness",
|
||
"severity": "medium",
|
||
"description": f"Knowledge transfer success rate: {flow_analysis['transfer_success_rate']:.1%}",
|
||
"recommendation": "Improve knowledge quality, context, and applicability"
|
||
})
|
||
|
||
return flow_analysis
|
||
```
|
||
|
||
### Step 6: Decision Quality Analysis (Group 2)
|
||
|
||
```python
|
||
def analyze_decision_quality():
|
||
"""Analyze Group 2 decision-making effectiveness"""
|
||
|
||
group2_perf = get_group_performance(2)
|
||
explanations = get_all_explanations() # Get recent decision explanations
|
||
|
||
analysis = {
|
||
"total_decisions": group2_perf.get('total_tasks', 0),
|
||
"decision_accuracy": group2_perf.get('success_rate', 0),
|
||
"avg_confidence": group2_perf.get('avg_confidence', 0),
|
||
"user_alignment": 0, # From user_preference_learner
|
||
"issues": [],
|
||
"strengths": []
|
||
}
|
||
|
||
# Check decision accuracy
|
||
if analysis['decision_accuracy'] < 0.85:
|
||
analysis['issues'].append({
|
||
"issue": "low_decision_accuracy",
|
||
"value": analysis['decision_accuracy'],
|
||
"severity": "high",
|
||
"description": "Decisions not leading to successful outcomes",
|
||
"recommendation": "Review decision criteria and incorporate more historical data"
|
||
})
|
||
else:
|
||
analysis['strengths'].append("High decision accuracy")
|
||
|
||
# Check confidence calibration
|
||
if analysis['avg_confidence'] > 0.9 and analysis['decision_accuracy'] < 0.85:
|
||
analysis['issues'].append({
|
||
"issue": "overconfident_decisions",
|
||
"severity": "medium",
|
||
"description": "Confidence higher than actual success rate",
|
||
"recommendation": "Calibrate confidence scoring - add uncertainty factors"
|
||
})
|
||
|
||
# Check explanation quality
|
||
if len(explanations) > 0:
|
||
avg_explanation_completeness = sum(
|
||
len(e.get('why_chosen', [])) + len(e.get('why_not_alternatives', []))
|
||
for e in explanations
|
||
) / len(explanations)
|
||
|
||
if avg_explanation_completeness < 5:
|
||
analysis['issues'].append({
|
||
"issue": "sparse_explanations",
|
||
"severity": "low",
|
||
"description": "Decision explanations lack detail",
|
||
"recommendation": "Enhance decision_explainer to provide more comprehensive reasoning"
|
||
})
|
||
|
||
return analysis
|
||
```
|
||
|
||
### Step 7: Validation Effectiveness Analysis (Group 4)
|
||
|
||
```python
|
||
def analyze_validation_effectiveness():
|
||
"""Analyze Group 4 validation impact"""
|
||
|
||
group4_perf = get_group_performance(4)
|
||
|
||
analysis = {
|
||
"total_validations": group4_perf.get('total_tasks', 0),
|
||
"go_rate": 0, # Percentage of GO decisions
|
||
"nogo_rate": 0, # Percentage of NO-GO decisions
|
||
"avg_quality_score": group4_perf.get('avg_quality_score', 0),
|
||
"feedback_effectiveness": 0,
|
||
"issues": [],
|
||
"impact": []
|
||
}
|
||
|
||
# Ideal GO rate: 70-85% (too high = not catching issues, too low = too strict)
|
||
# This data would come from validation results
|
||
# For now, use placeholders
|
||
|
||
if analysis['go_rate'] > 0.9:
|
||
analysis['issues'].append({
|
||
"issue": "validation_too_lenient",
|
||
"severity": "medium",
|
||
"description": f"GO rate too high ({analysis['go_rate']:.1%}) - may miss quality issues",
|
||
"recommendation": "Review validation thresholds and criteria"
|
||
})
|
||
elif analysis['go_rate'] < 0.6:
|
||
analysis['issues'].append({
|
||
"issue": "validation_too_strict",
|
||
"severity": "low",
|
||
"description": f"GO rate too low ({analysis['go_rate']:.1%}) - may cause unnecessary iterations",
|
||
"recommendation": "Consider relaxing validation thresholds or improving Group 3 output quality"
|
||
})
|
||
|
||
# Check if validation is improving quality
|
||
# Compare quality scores before/after validation feedback
|
||
# This would require analysis of quality trends after Group 4 feedback
|
||
|
||
return analysis
|
||
```
|
||
|
||
### Step 8: Generate Comprehensive Analysis Report
|
||
|
||
**Report Structure**:
|
||
|
||
```markdown
|
||
# Four-Tier Group Analysis Report
|
||
Generated: {timestamp}
|
||
Analysis Period: Last {n} tasks
|
||
|
||
## Executive Summary
|
||
|
||
**Overall Health**: {score}/100 ({status})
|
||
|
||
**Key Findings**:
|
||
1. {finding_1}
|
||
2. {finding_2}
|
||
3. {finding_3}
|
||
|
||
**Critical Issues**: {critical_count}
|
||
**Optimization Opportunities**: {opportunity_count}
|
||
|
||
---
|
||
|
||
## 1. Collaboration Pattern Analysis
|
||
|
||
### Identified Patterns
|
||
|
||
#### Pattern: {pattern_name}
|
||
**Status**: {excellent/good/needs_attention}
|
||
**Description**: {description}
|
||
**Impact**: {impact_description}
|
||
|
||
### Collaboration Issues
|
||
|
||
#### Issue: {issue_name}
|
||
**Severity**: {high/medium/low}
|
||
**Location**: {group_flow}
|
||
**Description**: {detailed_description}
|
||
|
||
**Root Cause Analysis**:
|
||
- {cause_1}
|
||
- {cause_2}
|
||
|
||
**Recommendation**:
|
||
- {recommendation_1}
|
||
- {recommendation_2}
|
||
|
||
**Expected Improvement**: {improvement_description}
|
||
|
||
---
|
||
|
||
## 2. Performance Bottleneck Analysis
|
||
|
||
### Bottlenecks Identified
|
||
|
||
#### Bottleneck: {bottleneck_name}
|
||
**Group**: Group {group_num} ({group_name})
|
||
**Type**: {slow_execution/low_success/poor_quality}
|
||
**Severity**: {high/medium/low}
|
||
|
||
**Metrics**:
|
||
- Current Performance: {metric_value}
|
||
- Expected Performance: {target_value}
|
||
- Gap: {gap_value}
|
||
|
||
**Impact on System**:
|
||
{impact_description}
|
||
|
||
**Root Cause**:
|
||
{root_cause_analysis}
|
||
|
||
**Optimization Strategy**:
|
||
1. **Immediate Actions** (Next 1-5 tasks):
|
||
- {action_1}
|
||
- {action_2}
|
||
|
||
2. **Short-term Improvements** (Next 10-20 tasks):
|
||
- {improvement_1}
|
||
- {improvement_2}
|
||
|
||
3. **Long-term Optimization** (Next 50+ tasks):
|
||
- {strategy_1}
|
||
- {strategy_2}
|
||
|
||
**Expected Results**:
|
||
- Performance Improvement: {improvement}%
|
||
- Time Savings: {time} per task
|
||
- Quality Impact: +{points} points
|
||
|
||
---
|
||
|
||
## 3. Specialization Analysis
|
||
|
||
### Group Specialization Status
|
||
|
||
#### Group 1 (Strategic Analysis & Intelligence)
|
||
**Status**: {optimal/emerging/no_specialization/over_specialized}
|
||
**Task Count**: {count}
|
||
|
||
**Current Specializations**:
|
||
1. {specialization_1}: {success_rate}% success, {count} tasks
|
||
2. {specialization_2}: {success_rate}% success, {count} tasks
|
||
3. {specialization_3}: {success_rate}% success, {count} tasks
|
||
|
||
**Analysis**:
|
||
{analysis_description}
|
||
|
||
**Recommendation**:
|
||
{recommendation}
|
||
|
||
---
|
||
|
||
(Repeat for Groups 2, 3, 4)
|
||
|
||
---
|
||
|
||
## 4. Knowledge Flow Analysis
|
||
|
||
### Knowledge Transfer Effectiveness
|
||
|
||
**Total Knowledge Base**: {count} items
|
||
**Successful Transfers**: {success_count} ({success_rate}%)
|
||
**Knowledge Sources**:
|
||
- Group 1: {count} items
|
||
- Group 2: {count} items
|
||
- Group 3: {count} items
|
||
- Group 4: {count} items
|
||
|
||
### Flow Patterns
|
||
|
||
#### Pattern: {pattern_name}
|
||
**Description**: {description}
|
||
**Impact**: {positive/negative}
|
||
**Recommendation**: {recommendation}
|
||
|
||
### Knowledge Gaps
|
||
|
||
**Identified Gaps**:
|
||
1. {gap_description} - Missing knowledge in {area}
|
||
2. {gap_description} - Underutilized knowledge from {source}
|
||
|
||
**Impact**: {impact_description}
|
||
|
||
**Actions**:
|
||
- {action_1}
|
||
- {action_2}
|
||
|
||
---
|
||
|
||
## 5. Decision Quality Analysis (Group 2)
|
||
|
||
### Decision-Making Effectiveness
|
||
|
||
**Total Decisions**: {count}
|
||
**Decision Accuracy**: {accuracy}%
|
||
**Average Confidence**: {confidence}
|
||
**User Alignment**: {alignment}%
|
||
|
||
### Strengths
|
||
- {strength_1}
|
||
- {strength_2}
|
||
|
||
### Areas for Improvement
|
||
|
||
#### Issue: {issue_name}
|
||
**Severity**: {severity}
|
||
**Description**: {description}
|
||
|
||
**Analysis**:
|
||
{detailed_analysis}
|
||
|
||
**Recommendation**:
|
||
{actionable_recommendation}
|
||
|
||
**Expected Impact**:
|
||
- Decision Accuracy: +{improvement}%
|
||
- User Satisfaction: +{improvement}%
|
||
|
||
---
|
||
|
||
## 6. Validation Effectiveness Analysis (Group 4)
|
||
|
||
### Validation Impact
|
||
|
||
**Total Validations**: {count}
|
||
**GO Rate**: {rate}%
|
||
**NO-GO Rate**: {rate}%
|
||
**Average Quality Score**: {score}/100
|
||
|
||
### Five-Layer Performance
|
||
- Functional (30 pts): {avg}/30 ({status})
|
||
- Quality (25 pts): {avg}/25 ({status})
|
||
- Performance (20 pts): {avg}/20 ({status})
|
||
- Integration (15 pts): {avg}/15 ({status})
|
||
- UX (10 pts): {avg}/10 ({status})
|
||
|
||
### Validation Effectiveness
|
||
|
||
**Feedback Impact**:
|
||
- Quality Improvements Driven: +{points} avg
|
||
- Issues Prevented: {count}
|
||
- Iterations Saved: {count}
|
||
|
||
### Issues & Recommendations
|
||
|
||
{issue_analysis}
|
||
|
||
---
|
||
|
||
## 7. Optimization Roadmap
|
||
|
||
### Immediate Actions (Implement Now)
|
||
|
||
#### Action 1: {action_name}
|
||
**Priority**: High
|
||
**Group(s) Affected**: {groups}
|
||
**Implementation**: {steps}
|
||
**Expected Impact**: {impact}
|
||
**Effort**: {hours} hours
|
||
|
||
---
|
||
|
||
(Additional immediate actions)
|
||
|
||
---
|
||
|
||
### Short-Term Improvements (Next 10-20 Tasks)
|
||
|
||
#### Improvement 1: {improvement_name}
|
||
**Objective**: {objective}
|
||
**Implementation Strategy**: {strategy}
|
||
**Success Metrics**: {metrics}
|
||
**Timeline**: {timeline}
|
||
|
||
---
|
||
|
||
### Long-Term Strategic Changes (Next 50+ Tasks)
|
||
|
||
#### Strategy 1: {strategy_name}
|
||
**Vision**: {vision_statement}
|
||
**Approach**: {approach_description}
|
||
**Milestones**: {milestones}
|
||
**Expected Transformation**: {transformation_description}
|
||
|
||
---
|
||
|
||
## 8. Success Metrics & KPIs
|
||
|
||
### Target Metrics (30-day goals)
|
||
|
||
| Metric | Current | Target | Gap |
|
||
|--------|---------|--------|-----|
|
||
| Overall Quality Score | {current} | {target} | {gap} |
|
||
| Average Iterations | {current} | {target} | {gap} |
|
||
| Decision Accuracy | {current}% | {target}% | {gap}% |
|
||
| Communication Success | {current}% | {target}% | {gap}% |
|
||
| GO Rate | {current}% | {target}% | {gap}% |
|
||
|
||
### Tracking Plan
|
||
|
||
**Weekly Checkpoints**:
|
||
- Run `/monitor:groups` weekly
|
||
- Track KPI progress
|
||
- Adjust strategies as needed
|
||
|
||
**Monthly Reviews**:
|
||
- Run `/analyze:groups` monthly
|
||
- Comprehensive performance review
|
||
- Strategic adjustments
|
||
|
||
---
|
||
|
||
## Conclusion
|
||
|
||
**System Status**: {status}
|
||
|
||
**Key Takeaways**:
|
||
1. {takeaway_1}
|
||
2. {takeaway_2}
|
||
3. {takeaway_3}
|
||
|
||
**Next Steps**:
|
||
1. {next_step_1}
|
||
2. {next_step_2}
|
||
3. {next_step_3}
|
||
|
||
**Confidence in Recommendations**: {confidence}%
|
||
|
||
---
|
||
|
||
Report Path: .claude/data/reports/group-analysis-{date}.md
|
||
```
|
||
|
||
## Result Presentation
|
||
|
||
**Terminal Output (15-20 lines max)**:
|
||
```
|
||
+==============================================================+
|
||
| FOUR-TIER GROUP ANALYSIS REPORT |
|
||
+==============================================================+
|
||
|
||
Overall Health: {score}/100 ({status})
|
||
Analysis Period: Last {n} tasks
|
||
|
||
KEY FINDINGS:
|
||
[PASS] {finding_1}
|
||
[WARN]️ {finding_2}
|
||
[FAIL] {finding_3}
|
||
|
||
CRITICAL ISSUES: {count}
|
||
* {issue_1}
|
||
* {issue_2}
|
||
|
||
OPTIMIZATION OPPORTUNITIES: {count}
|
||
* {opportunity_1}
|
||
* {opportunity_2}
|
||
|
||
TOP RECOMMENDATIONS:
|
||
1. [{priority}] {recommendation_1}
|
||
2. [{priority}] {recommendation_2}
|
||
|
||
📄 Detailed Analysis: .claude/data/reports/group-analysis-{date}.md
|
||
⏱️ Execution Time: {time}s
|
||
```
|
||
|
||
**File Report**: Save complete analysis to `.claude/data/reports/group-analysis-YYYY-MM-DD.md`
|
||
|
||
## Notes
|
||
|
||
- **Deep Analysis**: Goes beyond monitoring to identify root causes
|
||
- **Actionable**: Every issue comes with specific recommendations
|
||
- **Prioritized**: Clear immediate, short-term, and long-term actions
|
||
- **Data-Driven**: Based on comprehensive metrics across all systems
|
||
- **Run Monthly**: Or when performance issues are observed
|
||
- **Complements**: `/monitor:groups` (real-time) vs `/analyze:groups` (deep dive)
|
||
|
||
## Integration
|
||
|
||
Uses all four-tier learning systems:
|
||
- `lib/group_collaboration_system.py`
|
||
- `lib/group_performance_tracker.py`
|
||
- `lib/inter_group_knowledge_transfer.py`
|
||
- `lib/group_specialization_learner.py`
|
||
- `lib/agent_performance_tracker.py`
|
||
- `lib/agent_feedback_system.py`
|
||
- `lib/decision_explainer.py`
|
||
- `lib/proactive_suggester.py`
|