--- name: performance-scaling description: Cross-model performance optimization and scaling configurations for autonomous agents version: 1.0.0 --- ## Overview This skill provides performance scaling and optimization strategies for autonomous agents across different LLM models, ensuring optimal execution characteristics while maintaining quality standards. ## Model Performance Profiles ### Claude Sonnet 4.5 Performance Profile ```json { "model": "claude-sonnet-4.5", "base_performance": { "execution_speed": "fast", "reasoning_depth": "high", "context_switching": "excellent", "adaptability": "very_high" }, "scaling_factors": { "time_multiplier": 1.0, "quality_target": 90, "complexity_handling": 0.9, "parallel_processing": 1.2 }, "optimization_strategies": [ "context_merging", "predictive_delegation", "pattern_weighting", "adaptive_quality_thresholds" ] } ``` ### Claude Haiku 4.5 Performance Profile ```json { "model": "claude-haiku-4.5", "base_performance": { "execution_speed": "very_fast", "reasoning_depth": "medium", "context_switching": "good", "adaptability": "high" }, "scaling_factors": { "time_multiplier": 0.8, "quality_target": 88, "complexity_handling": 1.1, "parallel_processing": 1.0 }, "optimization_strategies": [ "fast_execution", "selective_processing", "efficient_delegation", "streamlined_quality_checks" ] } ``` ### Claude Opus 4.1 Performance Profile ```json { "model": "claude-opus-4.1", "base_performance": { "execution_speed": "very_fast", "reasoning_depth": "very_high", "context_switching": "excellent", "adaptability": "maximum" }, "scaling_factors": { "time_multiplier": 0.9, "quality_target": 95, "complexity_handling": 0.8, "parallel_processing": 1.4 }, "optimization_strategies": [ "anticipatory_execution", "enhanced_parallelization", "predictive_caching", "advanced_pattern_recognition" ] } ``` ### GLM-4.6 Performance Profile ```json { "model": "glm-4.6", "base_performance": { "execution_speed": "moderate", "reasoning_depth": "medium", "context_switching": "good", "adaptability": "medium" }, "scaling_factors": { "time_multiplier": 1.25, "quality_target": 88, "complexity_handling": 1.2, "parallel_processing": 0.8 }, "optimization_strategies": [ "structured_sequencing", "explicit_instruction_optimization", "step_by_step_validation", "clear_handoff_protocols" ] } ``` ## Performance Scaling Strategies ### Time-Based Scaling **Execution Time Allocation**: ```javascript function scaleExecutionTime(baseTime, model, complexity) { const profiles = { 'claude-sonnet': { multiplier: 1.0, complexity_factor: 0.9 }, 'claude-4.5': { multiplier: 0.9, complexity_factor: 0.8 }, 'glm-4.6': { multiplier: 1.25, complexity_factor: 1.2 }, 'fallback': { multiplier: 1.5, complexity_factor: 1.4 } }; const profile = profiles[model] || profiles.fallback; return baseTime * profile.multiplier * (1 + complexity * profile.complexity_factor); } ``` **Timeout Adjustments**: - **Claude Sonnet**: Standard timeouts with 10% buffer - **Claude 4.5**: Reduced timeouts with 5% buffer - **GLM-4.6**: Extended timeouts with 25% buffer - **Fallback**: Conservative timeouts with 50% buffer ### Quality Target Scaling **Model-Specific Quality Targets**: ```javascript function getQualityTarget(model, taskType) { const baseTargets = { 'claude-sonnet': { simple: 85, complex: 90, critical: 95 }, 'claude-4.5': { simple: 88, complex: 92, critical: 96 }, 'glm-4.6': { simple: 82, complex: 88, critical: 92 }, 'fallback': { simple: 80, complex: 85, critical: 90 } }; return baseTargets[model]?.[taskType] || baseTargets.fallback.complex; } ``` **Quality Assessment Adaptation**: - **Claude Models**: Emphasize contextual understanding and pattern recognition - **GLM Models**: Emphasize structured accuracy and procedural correctness ### Resource Scaling **Memory Management**: ```javascript function scaleMemoryUsage(model, taskSize) { const profiles = { 'claude-sonnet': { base_memory: 'medium', scaling_factor: 1.1 }, 'claude-4.5': { base_memory: 'medium', scaling_factor: 1.0 }, 'glm-4.6': { base_memory: 'high', scaling_factor: 1.3 }, 'fallback': { base_memory: 'high', scaling_factor: 1.5 } }; const profile = profiles[model] || profiles.fallback; return allocateMemory(profile.base_memory, taskSize * profile.scaling_factor); } ``` **Concurrent Task Limits**: - **Claude Sonnet**: 3-4 concurrent tasks - **Claude 4.5**: 4-5 concurrent tasks - **GLM-4.6**: 2-3 concurrent tasks - **Fallback**: 1-2 concurrent tasks ## Adaptive Optimization Algorithms ### Dynamic Performance Adjustment **Real-Time Performance Monitoring**: ```javascript function monitorPerformance(model, currentMetrics) { const baseline = getPerformanceBaseline(model); const variance = calculateVariance(currentMetrics, baseline); if (variance > 0.2) { // Performance deviating significantly from baseline return adjustPerformanceParameters(model, currentMetrics); } return currentMetrics; } ``` **Automatic Parameter Tuning**: ```javascript function tuneParameters(model, taskHistory) { const performance = analyzeTaskPerformance(taskHistory); const adjustments = calculateOptimalAdjustments(model, performance); return { timeout_adjustments: adjustments.timeouts, quality_thresholds: adjustments.quality, resource_allocation: adjustments.resources, delegation_strategy: adjustments.delegation }; } ``` ### Learning-Based Optimization **Pattern Recognition for Performance**: ```javascript function learnPerformancePatterns(executionHistory) { const patterns = { successful_executions: extractSuccessPatterns(executionHistory), failed_executions: extractFailurePatterns(executionHistory), optimization_opportunities: identifyOptimizations(executionHistory) }; return generatePerformanceRecommendations(patterns); } ``` **Model-Specific Learning**: - **Claude Models**: Learn from nuanced patterns and contextual factors - **GLM Models**: Learn from structured procedures and clear success/failure patterns ## Performance Metrics and KPIs ### Core Performance Indicators **Execution Metrics**: - **Task Completion Time**: Time from task start to completion - **Quality Achievement**: Final quality score vs target - **Resource Efficiency**: Memory and CPU usage efficiency - **Error Rate**: Frequency of errors requiring recovery **Model-Specific KPIs**: ```javascript const modelKPIs = { 'claude-sonnet': { 'context_switching_efficiency': '>= 90%', 'pattern_recognition_accuracy': '>= 85%', 'adaptive_decision_quality': '>= 88%' }, 'claude-4.5': { 'predictive_accuracy': '>= 80%', 'anticipatory_optimization': '>= 75%', 'enhanced_reasoning_utilization': '>= 90%' }, 'glm-4.6': { 'procedural_accuracy': '>= 95%', 'structured_execution_compliance': '>= 98%', 'explicit_instruction_success': '>= 92%' } }; ``` ### Performance Benchmarking **Comparative Analysis**: ```javascript function benchmarkPerformance(model, testSuite) { const results = runPerformanceTests(model, testSuite); const baseline = getIndustryBaseline(model); return { relative_performance: results.score / baseline.score, improvement_opportunities: identifyImprovements(results, baseline), model_strengths: analyzeModelStrengths(results), optimization_recommendations: generateRecommendations(results) }; } ``` ## Performance Optimization Techniques ### Model-Specific Optimizations **Claude Sonnet Optimizations**: 1. **Context Merging**: Combine related contexts to reduce switching overhead 2. **Weight-Based Decision Making**: Use historical success patterns for decisions 3. **Progressive Loading**: Load skills progressively based on immediate needs 4. **Adaptive Quality Thresholds**: Adjust quality targets based on task complexity **Claude 4.5 Optimizations**: 1. **Anticipatory Execution**: Start likely tasks before explicit request 2. **Enhanced Parallelization**: Maximize concurrent task execution 3. **Predictive Caching**: Cache likely-needed resources proactively 4. **Advanced Pattern Matching**: Use complex pattern recognition for optimization **GLM-4.6 Optimizations**: 1. **Structured Sequencing**: Optimize task order for efficiency 2. **Explicit Instruction Optimization**: Minimize ambiguity in instructions 3. **Step-by-Step Validation**: Validate each step before proceeding 4. **Clear Handoff Protocols**: Ensure clean transitions between tasks ### Universal Optimizations **Cross-Model Techniques**: 1. **Resource Pooling**: Share resources across compatible tasks 2. **Intelligent Caching**: Cache results based on usage patterns 3. **Batch Processing**: Group similar operations for efficiency 4. **Lazy Loading**: Load resources only when needed ## Implementation Guidelines ### Performance Configuration Loading ```javascript function loadPerformanceConfiguration(model) { const baseConfig = getBasePerformanceProfile(model); const historicalData = getHistoricalPerformanceData(model); const currentContext = assessCurrentContext(); return mergeAndOptimizeConfiguration(baseConfig, historicalData, currentContext); } ``` ### Runtime Performance Adjustment ```javascript function adjustRuntimePerformance(currentMetrics, targetProfile) { const adjustments = calculateNeededAdjustments(currentMetrics, targetProfile); return { timeout_adjustments: adjustments.timeouts, quality_modifications: adjustments.quality, resource_reallocation: adjustments.resources, strategy_changes: adjustments.strategy }; } ``` ### Performance Monitoring and Alerting ```javascript function monitorPerformanceHealth(model, metrics) { const healthScore = calculatePerformanceHealth(model, metrics); if (healthScore < 0.8) { return { status: 'degraded', recommendations: generateImprovementActions(model, metrics), automatic_adjustments: applyAutomaticOptimizations(model, metrics) }; } return { status: 'healthy', score: healthScore }; } ``` ## Usage Guidelines ### When to Apply Performance Scaling 1. **Task Initialization**: Set performance targets based on model and task type 2. **Mid-Execution Adjustment**: Adapt parameters based on current performance 3. **Resource Optimization**: Scale resource allocation based on availability 4. **Quality-Performance Tradeoffs**: Balance speed vs accuracy based on requirements ### Integration Points - **Orchestrator Agent**: Use for task planning and resource allocation - **All Specialized Agents**: Use for model-specific execution optimization - **Quality Controller**: Use for adaptive quality target setting - **Background Task Manager**: Use for concurrent task optimization This skill ensures optimal performance across all supported models while maintaining high quality standards and adapting to varying task requirements.