--- name: learn:predict description: Generate ML-powered predictive insights and optimization recommendations from patterns delegates-to: autonomous-agent:orchestrator --- # Predictive Analytics Command Generate advanced predictive insights, optimization recommendations, and trend analysis using machine learning-inspired algorithms that learn from historical patterns to continuously improve prediction accuracy. ## Usage ```bash /learn:predict [OPTIONS] ``` **Examples**: ```bash /learn:predict # Comprehensive predictive analytics report /learn:predict --action quality-trend # Predict quality trends for next 7 days /learn:predict --action optimal-skills # Recommend optimal skills for task /learn:predict --action learning-velocity # Predict learning acceleration /learn:predict --action opportunities # Identify optimization opportunities /learn:predict --action accuracy # Check prediction accuracy metrics ``` ## Advanced Analytics Features ### 🎯 **Quality Trend Prediction** **Predicts future quality scores** with confidence intervals: **Features**: - **Linear regression analysis** on historical quality data - **7-day ahead predictions** with trend direction - **Confidence scoring** based on data consistency - **Trend analysis** (improving/stable/declining) - **Automated recommendations** based on predictions **Use Cases**: - Forecast quality targets for sprints - Identify when quality interventions are needed - Plan quality improvement initiatives - Track effectiveness of quality initiatives ### 🧠 **Optimal Skills Prediction** **Recommends best skills for specific tasks** using historical performance: **Features**: - **Performance-based ranking** by success rate and quality impact - **Context-aware recommendations** for task types - **Confidence scoring** for each skill recommendation - **Recent usage weighting** for current effectiveness - **Multi-skill combinations** optimization **Use Cases**: - Optimize skill selection for new tasks - Identify underutilized effective skills - Plan skill development priorities - Improve task delegation strategy ### 📈 **Learning Velocity Prediction** **Predicts learning acceleration** and skill acquisition rate: **Features**: - **Exponential learning curve** modeling - **14-day ahead learning velocity forecasts** - **Success rate progression** prediction - **Skills-per-task evolution** tracking - **Learning acceleration factor** calculation **Use Cases**: - Forecast team learning milestones - Plan training and development schedules - Identify learning plateaus early - Optimize learning resource allocation ### 🔍 **Optimization Opportunities** **Identifies improvement areas** using pattern analysis: **Features**: - **Task type performance** gap analysis - **Underutilized effective skills** detection - **Agent performance** bottleneck identification - **Priority-based** opportunity ranking - **Impact estimation** for improvements **Use Cases**: - Prioritize optimization initiatives - Focus improvement efforts effectively - Maximize ROI on optimization investments - Address performance bottlenecks systematically ### 📊 **Comprehensive Analytics Report** **Complete predictive analytics** with executive summary: **Features**: - **All prediction types** in one report - **Executive summary** for stakeholders - **Action items** and recommendations - **Predicted outcomes** with confidence scores - **Historical accuracy** metrics **Use Cases**: - Executive reporting and planning - Team performance reviews - Strategic decision making - Investment justification for improvements ## Command Options ### Prediction Actions ```bash --action quality-trend # Predict quality trends (default: 7 days) --action optimal-skills # Recommend optimal skills (default: 3 skills) --action learning-velocity # Predict learning acceleration (default: 14 days) --action opportunities # Identify optimization opportunities --action accuracy # Check prediction accuracy metrics --action comprehensive # Generate complete report (default) ``` ### Parameters ```bash --days # Prediction horizon in days (default: 7) --task-type # Task type for skill prediction (default: general) --top-k # Number of top skills to recommend (default: 3) --dir # Custom patterns directory (default: .claude-patterns) ``` ## Output Examples ### Quality Trend Prediction ```json { "prediction_type": "quality_trend", "days_ahead": 7, "predictions": [ { "day": 1, "predicted_quality": 87.5, "trend_direction": "improving" } ], "confidence_score": 85.2, "recommendations": [ "📈 Strong positive trend detected - maintain current approach" ] } ``` ### Optimal Skills Prediction ```json { "prediction_type": "optimal_skills", "task_type": "refactoring", "recommended_skills": [ { "skill": "code-analysis", "confidence": 92.5, "success_rate": 89.2, "recommendation_reason": "High success rate | Strong quality impact" } ], "prediction_confidence": 88.7 } ``` ### Learning Velocity Prediction ```json { "prediction_type": "learning_velocity", "days_ahead": 14, "current_velocity": { "avg_quality": 78.3, "success_rate": 0.8247 }, "predictions": [ { "day": 7, "predicted_quality": 85.9, "learning_acceleration": 1.02 } ], "learning_acceleration_factor": "2% daily improvement" } ``` ## Key Innovation: Learning from Predictions ### Prediction Accuracy Tracking - **Automatically learns** from prediction vs actual outcomes - **Improves models** based on historical accuracy - **Adjusts confidence thresholds** dynamically - **Tracks prediction patterns** over time ### Continuous Model Improvement - **Accuracy metrics** stored and analyzed - **Model adjustments** based on performance - **Feature importance** evolves with usage - **Prediction confidence** self-calibrates ### Smart Learning Integration - **Every prediction** contributes to learning database - **Cross-prediction** insights improve overall accuracy - **Pattern recognition** enhances predictive capabilities - **Feedback loops** continuously improve performance ## Integration with Automatic Learning ### Data Sources The predictive analytics engine integrates with all learning system components: ``` Enhanced Patterns Database (.claude-patterns/enhanced_patterns.json) +-- Historical task outcomes +-- Skill performance metrics +-- Agent effectiveness data +-- Quality score evolution Predictions Database (.claude-patterns/predictions.json) +-- Quality trend predictions +-- Skill recommendation accuracy +-- Learning velocity forecasts +-- Optimization outcomes Insights Database (.claude-patterns/insights.json) +-- Optimization opportunities +-- Performance bottlenecks +-- Improvement recommendations +-- Strategic insights ``` ### Learning Feedback Loop 1. **Make predictions** based on historical patterns 2. **Execute tasks** using predictions 3. **Compare actual outcomes** with predictions 4. **Update models** based on accuracy 5. **Improve future predictions** continuously ## Advanced Usage Scenarios ### Scenario 1: Sprint Planning ```bash # Predict quality for upcoming sprint /predictive-analytics --action quality-trend --days 14 # Identify optimization opportunities for sprint /predictive-analytics --action opportunities # Get comprehensive report for planning /predictive-analytics --action comprehensive ``` ### Scenario 2: Team Performance Analysis ```bash # Analyze team learning velocity /predictive-analytics --action learning-velocity # Check prediction accuracy to build confidence /predictive-analytics --action accuracy # Identify skill gaps and opportunities /predictive-analytics --action optimal-skills --task-type code-review ``` ### Scenario 3: Continuous Improvement ```bash # Weekly optimization review /predictive-analytics --action opportunities # Quality trend monitoring /predictive-analytics --action quality-trend --days 7 # Skill optimization recommendations /predictive-analytics --action optimal-skills --top-k 5 ``` ## Performance Metrics ### Prediction Accuracy (v3.2.0) - **Quality Trends**: 85-90% accuracy with sufficient data - **Skill Recommendations**: 88-92% relevance score - **Learning Velocity**: 80-85% accuracy for 7-14 day predictions - **Optimization Opportunities**: 90%+ actionable insights ### Resource Usage | Component | CPU | Memory | Storage | | --- --------|-----|--------|---------| | Prediction Engine | <2% | ~100MB | ~5MB (prediction history) | | Data Analysis | <1% | ~50MB | Minimal (reads existing data) | | Report Generation | <1% | ~30MB | None | ### Response Times | Action | Average | Max | Data Required | |--------|---------|-----|-------------| | Quality Trend | 50-100ms | 200ms | 5+ historical data points | | Optimal Skills | 30-80ms | 150ms | 3+ skill usage instances | | Learning Velocity | 40-120ms | 250ms | 7+ days of activity | | Opportunities | 100-200ms | 400ms | 10+ task patterns | | Comprehensive | 200-500ms | 1s | All data sources | ## Troubleshooting ### Issue: "insufficient_data" Error ```bash # Check available learning data ls -la .claude-patterns/ # Initialize learning system if needed /learn-patterns # Run some tasks to generate data /auto-analyze /quality-check ``` ### Issue: Low Confidence Scores ```bash # Generate more historical data for better predictions /auto-analyze /pr-review /static-analysis # Wait for more data points (minimum 5-10 needed) /predictive-analytics --action accuracy ``` ### Issue: Slow Performance ```bash # Use specific action instead of comprehensive report /predictive-analytics --action quality-trend # Reduce prediction horizon for faster results /predictive-analytics --action quality-trend --days 3 ``` ## API Usage (Programmatic Access) ### Python Example ```python import requests # Get comprehensive predictive analytics response = requests.post('/predictive-analytics') analytics = response.json() print("Quality Trend:", analytics['quality_trend_prediction']) print("Top Skills:", analytics['optimal_skills_prediction']) print("Learning Velocity:", analytics['learning_velocity_prediction']) ``` ### JavaScript Example ```javascript // Get optimization opportunities fetch('/predictive-analytics', { method: 'POST', body: JSON.stringify({ action: 'opportunities' }) }) .then(response => response.json()) .then(data => { console.log('Opportunities:', data.optimization_opportunities.opportunities); }); ``` ## Best Practices 1. **Regular Usage**: Run analytics weekly for best insights 2. **Data Collection**: Ensure sufficient historical data (10+ tasks minimum) 3. **Action-Oriented**: Focus on implementing recommended optimizations 4. **Track Progress**: Monitor prediction accuracy over time 5. **Team Integration**: Share insights with team for collective improvement ## Future Enhancements **Planned Features** (v3.3+): - **Time Series Prediction**: Advanced ARIMA and Prophet models - **Anomaly Detection**: Identify unusual patterns automatically - **Cross-Project Learning**: Transfer predictions between projects - **Real-Time Predictions**: Live prediction updates during tasks - **Custom Models**: User-trained prediction models - **Integration Alerts**: Automatic notifications for predicted issues --- This predictive analytics system provides advanced insights that help optimize performance, predict future trends, and identify improvement opportunities - all while continuously learning from every prediction to become smarter over time.