--- name: analyze:groups description: Deep analysis of four-tier group behavior, collaboration patterns, and optimization recommendations version: 7.0.0 category: analysis --- # Analyze Groups Command Perform comprehensive deep analysis of all four agent groups including collaboration patterns, bottlenecks, optimization opportunities, and actionable recommendations for improving group coordination and performance. ## What This Command Does **Analyzes**: 1. **Group Collaboration Patterns** - How groups work together, communication patterns, handoff quality 2. **Performance Bottlenecks** - Where delays occur, which groups need optimization 3. **Specialization Effectiveness** - Whether groups are specializing appropriately 4. **Knowledge Flow Analysis** - How knowledge transfers between groups 5. **Decision Quality Analysis** - Group 2 decision-making effectiveness 6. **Validation Effectiveness** - Group 4 validation impact on quality **Delivers**: - Root cause analysis of performance issues - Specific optimization recommendations - Communication improvement strategies - Specialization guidance - Actionable next steps ## Execution Steps ### Step 1: Load Comprehensive Data ```python from lib.group_collaboration_system import get_group_collaboration_stats, analyze_workflow_efficiency from lib.group_performance_tracker import get_group_performance, compare_groups, analyze_workflow_efficiency as group_workflow from lib.inter_group_knowledge_transfer import get_knowledge_transfer_stats, get_transfer_effectiveness from lib.group_specialization_learner import get_specialization_profile, get_recommended_group_for_task, get_learning_insights from lib.agent_feedback_system import get_feedback_stats from lib.decision_explainer import get_all_explanations from lib.proactive_suggester import get_statistics as get_suggestion_stats # Gather all data for last 100 tasks collaboration_stats = get_group_collaboration_stats() workflow_efficiency = analyze_workflow_efficiency() knowledge_effectiveness = get_transfer_effectiveness() learning_insights = get_learning_insights() suggestion_stats = get_suggestion_stats() ``` ### Step 2: Analyze Group Collaboration Patterns ```python def analyze_collaboration_patterns(collab_stats): """Identify collaboration patterns and issues""" patterns_found = [] issues_found = [] # Pattern 1: Sequential Flow (Normal) if collab_stats['group_1_to_2']['success_rate'] > 0.9 and \ collab_stats['group_2_to_3']['success_rate'] > 0.9 and \ collab_stats['group_3_to_4']['success_rate'] > 0.9: patterns_found.append({ "pattern": "healthy_sequential_flow", "description": "Groups collaborate sequentially with high success", "status": "excellent" }) # Pattern 2: Feedback Loop Effectiveness feedback_loops = [ collab_stats.get('group_4_to_1', {}), collab_stats.get('group_4_to_2', {}), collab_stats.get('group_4_to_3', {}) ] avg_feedback_effectiveness = sum(loop.get('effectiveness', 0) for loop in feedback_loops) / 3 if avg_feedback_effectiveness < 0.7: issues_found.append({ "issue": "weak_feedback_loops", "severity": "medium", "description": "Group 4 feedback not effectively improving other groups", "recommendation": "Review feedback quality and actionability" }) # Pattern 3: Bottleneck Detection communication_times = { "G1->G2": collab_stats['group_1_to_2'].get('avg_time_seconds', 0), "G2->G3": collab_stats['group_2_to_3'].get('avg_time_seconds', 0), "G3->G4": collab_stats['group_3_to_4'].get('avg_time_seconds', 0) } max_time = max(communication_times.values()) for flow, time in communication_times.items(): if time > max_time * 0.7: # More than 70% of max issues_found.append({ "issue": "communication_bottleneck", "severity": "high", "location": flow, "description": f"Communication delay in {flow}: {time}s", "recommendation": f"Optimize {flow.split('->')[0]} output preparation" }) return patterns_found, issues_found ``` ### Step 3: Analyze Performance Bottlenecks ```python def identify_bottlenecks(): """Identify which groups are performance bottlenecks""" bottlenecks = [] for group_num in [1, 2, 3, 4]: perf = get_group_performance(group_num) # Check success rate if perf.get('success_rate', 1.0) < 0.8: bottlenecks.append({ "group": group_num, "issue": "low_success_rate", "value": perf['success_rate'], "severity": "high", "recommendation": "Review group training and specialization" }) # Check execution time if perf.get('avg_execution_time', 0) > 300: # 5 minutes bottlenecks.append({ "group": group_num, "issue": "slow_execution", "value": perf['avg_execution_time'], "severity": "medium", "recommendation": "Profile and optimize slow operations" }) # Check quality output if perf.get('avg_quality_score', 100) < 75: bottlenecks.append({ "group": group_num, "issue": "low_quality_output", "value": perf['avg_quality_score'], "severity": "high", "recommendation": "Improve group capabilities or adjust expectations" }) return bottlenecks ``` ### Step 4: Analyze Specialization Effectiveness ```python def analyze_specialization(): """Check if groups are developing appropriate specializations""" specialization_analysis = {} for group_num in [1, 2, 3, 4]: profile = get_specialization_profile(group_num) specializations = profile.get('specializations', []) task_count = profile.get('total_tasks', 0) # Ideal: 3-5 clear specializations after 100+ tasks if task_count < 50: status = "insufficient_data" recommendation = f"Need {50 - task_count} more tasks to identify specializations" elif len(specializations) == 0: status = "no_specialization" recommendation = "Group not developing specializations - may need more diverse tasks" elif len(specializations) < 3: status = "emerging" recommendation = "Specializations emerging - continue diverse task exposure" elif len(specializations) <= 5: status = "optimal" recommendation = "Good specialization balance - maintain current task distribution" else: status = "over_specialized" recommendation = "Too many specializations - may indicate lack of focus" specialization_analysis[f"Group {group_num}"] = { "status": status, "specializations": specializations, "task_count": task_count, "recommendation": recommendation } return specialization_analysis ``` ### Step 5: Analyze Knowledge Flow ```python def analyze_knowledge_flow(knowledge_stats): """Analyze how knowledge flows between groups""" flow_analysis = { "total_knowledge": knowledge_stats.get('total_knowledge', 0), "successful_transfers": knowledge_stats.get('successful_transfers', 0), "transfer_success_rate": knowledge_stats.get('transfer_success_rate', 0), "flow_patterns": [] } # Identify dominant knowledge sources sources = {} for transfer in knowledge_stats.get('transfers', []): source = transfer.get('source_group') sources[source] = sources.get(source, 0) + 1 # Check if knowledge is distributed or concentrated if sources: max_source = max(sources.values()) if max_source > sum(sources.values()) * 0.6: flow_analysis['flow_patterns'].append({ "pattern": "concentrated_source", "description": f"Group {max(sources, key=sources.get)} is primary knowledge source ({max_source} items)", "recommendation": "Encourage knowledge sharing from other groups" }) else: flow_analysis['flow_patterns'].append({ "pattern": "distributed_sources", "description": "Knowledge well-distributed across groups", "status": "healthy" }) # Check transfer effectiveness if flow_analysis['transfer_success_rate'] < 0.7: flow_analysis['flow_patterns'].append({ "pattern": "low_transfer_effectiveness", "severity": "medium", "description": f"Knowledge transfer success rate: {flow_analysis['transfer_success_rate']:.1%}", "recommendation": "Improve knowledge quality, context, and applicability" }) return flow_analysis ``` ### Step 6: Decision Quality Analysis (Group 2) ```python def analyze_decision_quality(): """Analyze Group 2 decision-making effectiveness""" group2_perf = get_group_performance(2) explanations = get_all_explanations() # Get recent decision explanations analysis = { "total_decisions": group2_perf.get('total_tasks', 0), "decision_accuracy": group2_perf.get('success_rate', 0), "avg_confidence": group2_perf.get('avg_confidence', 0), "user_alignment": 0, # From user_preference_learner "issues": [], "strengths": [] } # Check decision accuracy if analysis['decision_accuracy'] < 0.85: analysis['issues'].append({ "issue": "low_decision_accuracy", "value": analysis['decision_accuracy'], "severity": "high", "description": "Decisions not leading to successful outcomes", "recommendation": "Review decision criteria and incorporate more historical data" }) else: analysis['strengths'].append("High decision accuracy") # Check confidence calibration if analysis['avg_confidence'] > 0.9 and analysis['decision_accuracy'] < 0.85: analysis['issues'].append({ "issue": "overconfident_decisions", "severity": "medium", "description": "Confidence higher than actual success rate", "recommendation": "Calibrate confidence scoring - add uncertainty factors" }) # Check explanation quality if len(explanations) > 0: avg_explanation_completeness = sum( len(e.get('why_chosen', [])) + len(e.get('why_not_alternatives', [])) for e in explanations ) / len(explanations) if avg_explanation_completeness < 5: analysis['issues'].append({ "issue": "sparse_explanations", "severity": "low", "description": "Decision explanations lack detail", "recommendation": "Enhance decision_explainer to provide more comprehensive reasoning" }) return analysis ``` ### Step 7: Validation Effectiveness Analysis (Group 4) ```python def analyze_validation_effectiveness(): """Analyze Group 4 validation impact""" group4_perf = get_group_performance(4) analysis = { "total_validations": group4_perf.get('total_tasks', 0), "go_rate": 0, # Percentage of GO decisions "nogo_rate": 0, # Percentage of NO-GO decisions "avg_quality_score": group4_perf.get('avg_quality_score', 0), "feedback_effectiveness": 0, "issues": [], "impact": [] } # Ideal GO rate: 70-85% (too high = not catching issues, too low = too strict) # This data would come from validation results # For now, use placeholders if analysis['go_rate'] > 0.9: analysis['issues'].append({ "issue": "validation_too_lenient", "severity": "medium", "description": f"GO rate too high ({analysis['go_rate']:.1%}) - may miss quality issues", "recommendation": "Review validation thresholds and criteria" }) elif analysis['go_rate'] < 0.6: analysis['issues'].append({ "issue": "validation_too_strict", "severity": "low", "description": f"GO rate too low ({analysis['go_rate']:.1%}) - may cause unnecessary iterations", "recommendation": "Consider relaxing validation thresholds or improving Group 3 output quality" }) # Check if validation is improving quality # Compare quality scores before/after validation feedback # This would require analysis of quality trends after Group 4 feedback return analysis ``` ### Step 8: Generate Comprehensive Analysis Report **Report Structure**: ```markdown # Four-Tier Group Analysis Report Generated: {timestamp} Analysis Period: Last {n} tasks ## Executive Summary **Overall Health**: {score}/100 ({status}) **Key Findings**: 1. {finding_1} 2. {finding_2} 3. {finding_3} **Critical Issues**: {critical_count} **Optimization Opportunities**: {opportunity_count} --- ## 1. Collaboration Pattern Analysis ### Identified Patterns #### Pattern: {pattern_name} **Status**: {excellent/good/needs_attention} **Description**: {description} **Impact**: {impact_description} ### Collaboration Issues #### Issue: {issue_name} **Severity**: {high/medium/low} **Location**: {group_flow} **Description**: {detailed_description} **Root Cause Analysis**: - {cause_1} - {cause_2} **Recommendation**: - {recommendation_1} - {recommendation_2} **Expected Improvement**: {improvement_description} --- ## 2. Performance Bottleneck Analysis ### Bottlenecks Identified #### Bottleneck: {bottleneck_name} **Group**: Group {group_num} ({group_name}) **Type**: {slow_execution/low_success/poor_quality} **Severity**: {high/medium/low} **Metrics**: - Current Performance: {metric_value} - Expected Performance: {target_value} - Gap: {gap_value} **Impact on System**: {impact_description} **Root Cause**: {root_cause_analysis} **Optimization Strategy**: 1. **Immediate Actions** (Next 1-5 tasks): - {action_1} - {action_2} 2. **Short-term Improvements** (Next 10-20 tasks): - {improvement_1} - {improvement_2} 3. **Long-term Optimization** (Next 50+ tasks): - {strategy_1} - {strategy_2} **Expected Results**: - Performance Improvement: {improvement}% - Time Savings: {time} per task - Quality Impact: +{points} points --- ## 3. Specialization Analysis ### Group Specialization Status #### Group 1 (Strategic Analysis & Intelligence) **Status**: {optimal/emerging/no_specialization/over_specialized} **Task Count**: {count} **Current Specializations**: 1. {specialization_1}: {success_rate}% success, {count} tasks 2. {specialization_2}: {success_rate}% success, {count} tasks 3. {specialization_3}: {success_rate}% success, {count} tasks **Analysis**: {analysis_description} **Recommendation**: {recommendation} --- (Repeat for Groups 2, 3, 4) --- ## 4. Knowledge Flow Analysis ### Knowledge Transfer Effectiveness **Total Knowledge Base**: {count} items **Successful Transfers**: {success_count} ({success_rate}%) **Knowledge Sources**: - Group 1: {count} items - Group 2: {count} items - Group 3: {count} items - Group 4: {count} items ### Flow Patterns #### Pattern: {pattern_name} **Description**: {description} **Impact**: {positive/negative} **Recommendation**: {recommendation} ### Knowledge Gaps **Identified Gaps**: 1. {gap_description} - Missing knowledge in {area} 2. {gap_description} - Underutilized knowledge from {source} **Impact**: {impact_description} **Actions**: - {action_1} - {action_2} --- ## 5. Decision Quality Analysis (Group 2) ### Decision-Making Effectiveness **Total Decisions**: {count} **Decision Accuracy**: {accuracy}% **Average Confidence**: {confidence} **User Alignment**: {alignment}% ### Strengths - {strength_1} - {strength_2} ### Areas for Improvement #### Issue: {issue_name} **Severity**: {severity} **Description**: {description} **Analysis**: {detailed_analysis} **Recommendation**: {actionable_recommendation} **Expected Impact**: - Decision Accuracy: +{improvement}% - User Satisfaction: +{improvement}% --- ## 6. Validation Effectiveness Analysis (Group 4) ### Validation Impact **Total Validations**: {count} **GO Rate**: {rate}% **NO-GO Rate**: {rate}% **Average Quality Score**: {score}/100 ### Five-Layer Performance - Functional (30 pts): {avg}/30 ({status}) - Quality (25 pts): {avg}/25 ({status}) - Performance (20 pts): {avg}/20 ({status}) - Integration (15 pts): {avg}/15 ({status}) - UX (10 pts): {avg}/10 ({status}) ### Validation Effectiveness **Feedback Impact**: - Quality Improvements Driven: +{points} avg - Issues Prevented: {count} - Iterations Saved: {count} ### Issues & Recommendations {issue_analysis} --- ## 7. Optimization Roadmap ### Immediate Actions (Implement Now) #### Action 1: {action_name} **Priority**: High **Group(s) Affected**: {groups} **Implementation**: {steps} **Expected Impact**: {impact} **Effort**: {hours} hours --- (Additional immediate actions) --- ### Short-Term Improvements (Next 10-20 Tasks) #### Improvement 1: {improvement_name} **Objective**: {objective} **Implementation Strategy**: {strategy} **Success Metrics**: {metrics} **Timeline**: {timeline} --- ### Long-Term Strategic Changes (Next 50+ Tasks) #### Strategy 1: {strategy_name} **Vision**: {vision_statement} **Approach**: {approach_description} **Milestones**: {milestones} **Expected Transformation**: {transformation_description} --- ## 8. Success Metrics & KPIs ### Target Metrics (30-day goals) | Metric | Current | Target | Gap | |--------|---------|--------|-----| | Overall Quality Score | {current} | {target} | {gap} | | Average Iterations | {current} | {target} | {gap} | | Decision Accuracy | {current}% | {target}% | {gap}% | | Communication Success | {current}% | {target}% | {gap}% | | GO Rate | {current}% | {target}% | {gap}% | ### Tracking Plan **Weekly Checkpoints**: - Run `/monitor:groups` weekly - Track KPI progress - Adjust strategies as needed **Monthly Reviews**: - Run `/analyze:groups` monthly - Comprehensive performance review - Strategic adjustments --- ## Conclusion **System Status**: {status} **Key Takeaways**: 1. {takeaway_1} 2. {takeaway_2} 3. {takeaway_3} **Next Steps**: 1. {next_step_1} 2. {next_step_2} 3. {next_step_3} **Confidence in Recommendations**: {confidence}% --- Report Path: .claude/data/reports/group-analysis-{date}.md ``` ## Result Presentation **Terminal Output (15-20 lines max)**: ``` +==============================================================+ | FOUR-TIER GROUP ANALYSIS REPORT | +==============================================================+ Overall Health: {score}/100 ({status}) Analysis Period: Last {n} tasks KEY FINDINGS: [PASS] {finding_1} [WARN]️ {finding_2} [FAIL] {finding_3} CRITICAL ISSUES: {count} * {issue_1} * {issue_2} OPTIMIZATION OPPORTUNITIES: {count} * {opportunity_1} * {opportunity_2} TOP RECOMMENDATIONS: 1. [{priority}] {recommendation_1} 2. [{priority}] {recommendation_2} 📄 Detailed Analysis: .claude/data/reports/group-analysis-{date}.md ⏱️ Execution Time: {time}s ``` **File Report**: Save complete analysis to `.claude/data/reports/group-analysis-YYYY-MM-DD.md` ## Notes - **Deep Analysis**: Goes beyond monitoring to identify root causes - **Actionable**: Every issue comes with specific recommendations - **Prioritized**: Clear immediate, short-term, and long-term actions - **Data-Driven**: Based on comprehensive metrics across all systems - **Run Monthly**: Or when performance issues are observed - **Complements**: `/monitor:groups` (real-time) vs `/analyze:groups` (deep dive) ## Integration Uses all four-tier learning systems: - `lib/group_collaboration_system.py` - `lib/group_performance_tracker.py` - `lib/inter_group_knowledge_transfer.py` - `lib/group_specialization_learner.py` - `lib/agent_performance_tracker.py` - `lib/agent_feedback_system.py` - `lib/decision_explainer.py` - `lib/proactive_suggester.py`