--- name: monitor:groups description: Real-time monitoring of four-tier group performance, communication, and specialization metrics version: 7.0.0 category: monitoring --- # Monitor Groups Command Display comprehensive real-time metrics for all four agent groups including performance, communication effectiveness, specialization, and learning progress. ## What This Command Does **Analyzes and displays**: 1. **Group Performance Metrics** - Success rates, quality scores, execution times per group 2. **Inter-Group Communication** - Message flow, success rates, feedback effectiveness 3. **Group Specialization** - What each group excels at based on task history 4. **Knowledge Transfer** - Cross-group learning effectiveness 5. **Decision Quality** - Group 2 decision accuracy and user alignment 6. **Validation Effectiveness** - Group 4 validation pass rates ## Execution Steps Follow these steps to generate comprehensive group monitoring report: ### Step 1: Load All Group Data ```python from lib.group_collaboration_system import get_group_collaboration_stats from lib.group_performance_tracker import get_group_performance, compare_groups from lib.inter_group_knowledge_transfer import get_knowledge_transfer_stats from lib.group_specialization_learner import get_specialization_profile, get_learning_insights from lib.agent_performance_tracker import get_agent_performance # Load all statistics collab_stats = get_group_collaboration_stats() knowledge_stats = get_knowledge_transfer_stats() learning_insights = get_learning_insights() ``` ### Step 2: Analyze Each Group **For Group 1 (Strategic Analysis & Intelligence)**: ```python group1_perf = get_group_performance(1) group1_spec = get_specialization_profile(1) # Key metrics: # - Total recommendations made # - Average confidence score # - Recommendation acceptance rate (by Group 2) # - Recommendation effectiveness (from Group 4 feedback) # - Top specializations (refactoring, security, performance) ``` **For Group 2 (Decision Making & Planning)**: ```python group2_perf = get_group_performance(2) group2_spec = get_specialization_profile(2) # Key metrics: # - Total decisions made # - Decision accuracy (plans executed successfully) # - User preference alignment score # - Average decision confidence # - Plan adjustment rate (how often plans need revision) ``` **For Group 3 (Execution & Implementation)**: ```python group3_perf = get_group_performance(3) group3_spec = get_specialization_profile(3) # Key metrics: # - Total executions completed # - First-time success rate # - Average quality improvement (before/after) # - Auto-fix success rate # - Average iterations needed ``` **For Group 4 (Validation & Optimization)**: ```python group4_perf = get_group_performance(4) group4_spec = get_specialization_profile(4) # Key metrics: # - Total validations performed # - GO/NO-GO decision distribution # - Average quality score (5-layer validation) # - Feedback effectiveness (improvements from feedback) # - Issue detection rate ``` ### Step 3: Analyze Inter-Group Communication ```python # Communication flow analysis comm_flows = { "Group 1 -> Group 2": collab_stats.get("group_1_to_2", {}), "Group 2 -> Group 3": collab_stats.get("group_2_to_3", {}), "Group 3 -> Group 4": collab_stats.get("group_3_to_4", {}), "Group 4 -> Group 1": collab_stats.get("group_4_to_1", {}), "Group 4 -> Group 2": collab_stats.get("group_4_to_2", {}), "Group 4 -> Group 3": collab_stats.get("group_4_to_3", {}) } # Calculate: # - Message success rate per flow # - Average feedback cycle time # - Communication bottlenecks ``` ### Step 4: Analyze Knowledge Transfer ```python # Knowledge transfer effectiveness for group_num in [1, 2, 3, 4]: knowledge_for_group = query_knowledge( for_group=group_num, knowledge_type=None # All types ) # Metrics: # - Total knowledge available to group # - Knowledge application success rate # - Top knowledge sources (which groups share most effectively) # - Knowledge confidence trends ``` ### Step 5: Identify Top Performers and Areas for Improvement ```python # Compare groups comparison = compare_groups(metric='quality_score') # Identify: # - Top performing group # - Groups needing improvement # - Emerging specializations # - Communication improvements needed ``` ### Step 6: Generate Comprehensive Report **Report Structure**: ```markdown # Four-Tier Group Monitoring Report Generated: {timestamp} ## Executive Summary - Overall System Health: {score}/100 - Total Tasks Completed: {total} - Average Quality Score: {avg_quality}/100 - Communication Success Rate: {comm_success}% - Knowledge Transfer Effectiveness: {knowledge_eff}% ## Group Performance Overview ### Group 1: Strategic Analysis & Intelligence (The "Brain") **Performance**: {rating} | **Tasks**: {count} | **Success Rate**: {success}% **Key Metrics**: - Recommendations Made: {rec_count} - Average Confidence: {avg_conf} - Acceptance Rate: {acceptance}% - Effectiveness Score: {effectiveness}/100 **Top Specializations**: 1. {spec_1} - {quality}% success rate 2. {spec_2} - {quality}% success rate 3. {spec_3} - {quality}% success rate **Top Agents**: - {agent_1}: {performance} ({task_type}) - {agent_2}: {performance} ({task_type}) --- ### Group 2: Decision Making & Planning (The "Council") **Performance**: {rating} | **Decisions**: {count} | **Accuracy**: {accuracy}% **Key Metrics**: - Decisions Made: {decision_count} - Decision Confidence: {avg_conf} - User Alignment: {alignment}% - Plan Success Rate: {plan_success}% **Decision Quality**: - Excellent (90-100): {excellent_count} - Good (70-89): {good_count} - Needs Improvement (<70): {poor_count} **Top Agents**: - strategic-planner: {performance} - preference-coordinator: {performance} --- ### Group 3: Execution & Implementation (The "Hand") **Performance**: {rating} | **Executions**: {count} | **Success**: {success}% **Key Metrics**: - Executions Completed: {exec_count} - First-Time Success: {first_time}% - Quality Improvement: +{improvement} points avg - Auto-Fix Success: {autofix}% **Top Specializations**: 1. {spec_1} - {quality}% success rate 2. {spec_2} - {quality}% success rate 3. {spec_3} - {quality}% success rate **Top Agents**: - {agent_1}: {performance} ({task_type}) - {agent_2}: {performance} ({task_type}) - {agent_3}: {performance} ({task_type}) --- ### Group 4: Validation & Optimization (The "Guardian") **Performance**: {rating} | **Validations**: {count} | **Pass Rate**: {pass_rate}% **Key Metrics**: - Validations Performed: {val_count} - GO Decisions: {go_count} ({go_pct}%) - NO-GO Decisions: {nogo_count} ({nogo_pct}%) - Average Quality Score: {avg_quality}/100 - Feedback Effectiveness: {feedback_eff}% **Five-Layer Validation Breakdown**: - Functional (30 pts): {func_avg}/30 - Quality (25 pts): {qual_avg}/25 - Performance (20 pts): {perf_avg}/20 - Integration (15 pts): {integ_avg}/15 - UX (10 pts): {ux_avg}/10 **Top Agents**: - post-execution-validator: {performance} - performance-optimizer: {performance} - continuous-improvement: {performance} --- ## Inter-Group Communication ### Communication Flow Analysis **Group 1 -> Group 2 (Analysis -> Decision)**: - Messages Sent: {count} - Success Rate: {success}% - Average Response Time: {time}s - Recommendation Acceptance: {acceptance}% **Group 2 -> Group 3 (Decision -> Execution)**: - Plans Sent: {count} - Execution Success: {success}% - Plan Completeness: {completeness}% - Average Execution Time: {time}s **Group 3 -> Group 4 (Execution -> Validation)**: - Results Sent: {count} - Validation Pass Rate: {pass_rate}% - Average Quality Improvement: +{improvement} pts - Iterations Needed: {iterations} avg **Group 4 -> All Groups (Feedback Loops)**: - Feedback Messages: {count} - Feedback Effectiveness: {effectiveness}% - Average Cycle Time: {time}s - Learning Applied: {learning_count} instances ### Communication Health - ✅ Excellent (>95%): {excellent_flows} - [WARN]️ Needs Attention (70-95%): {warning_flows} - ❌ Critical (<70%): {critical_flows} --- ## Knowledge Transfer ### Cross-Group Learning **Total Knowledge Base**: {total_knowledge} items **Average Confidence**: {avg_confidence} **Application Success Rate**: {application_success}% **Knowledge by Type**: - Patterns: {pattern_count} (avg confidence: {pattern_conf}) - Best Practices: {bp_count} (avg confidence: {bp_conf}) - Optimizations: {opt_count} (avg confidence: {opt_conf}) - Anti-Patterns: {ap_count} (avg confidence: {ap_conf}) **Top Knowledge Sources** (Groups sharing most effectively): 1. Group {group_num}: {knowledge_count} items, {success}% success rate 2. Group {group_num}: {knowledge_count} items, {success}% success rate 3. Group {group_num}: {knowledge_count} items, {success}% success rate **Knowledge Transfer Matrix**: ``` To G1 To G2 To G3 To G4 From G1 -- {n} {n} {n} From G2 {n} -- {n} {n} From G3 {n} {n} -- {n} From G4 {n} {n} {n} -- ``` --- ## Specialization Insights ### Group Specialization Maturity **Group 1 (Brain)**: {maturity_level} - Expertise Areas: {areas} - Emerging Specializations: {emerging} - Recommendation: {recommendation} **Group 2 (Council)**: {maturity_level} - Expertise Areas: {areas} - Decision Patterns: {patterns} - Recommendation: {recommendation} **Group 3 (Hand)**: {maturity_level} - Expertise Areas: {areas} - Execution Strengths: {strengths} - Recommendation: {recommendation} **Group 4 (Guardian)**: {maturity_level} - Expertise Areas: {areas} - Validation Focus: {focus} - Recommendation: {recommendation} --- ## Trends & Insights ### Performance Trends (Last 50 Tasks) **Quality Score Trend**: {trend} ({direction}) - Current Average: {current_avg}/100 - 10-Task Moving Average: {moving_avg}/100 - Trend Direction: {improving/stable/declining} **Iteration Efficiency**: {trend} - Current Average: {current_iterations} - Target: 1.2 or less - Status: {on_track/needs_attention} **Decision Accuracy**: {trend} - Current: {current_accuracy}% - Target: 90%+ - Status: {excellent/good/needs_improvement} ### Learning Insights {insight_1} {insight_2} {insight_3} --- ## Recommendations ### High Priority 1. {recommendation_1} 2. {recommendation_2} ### Medium Priority 1. {recommendation_1} 2. {recommendation_2} ### Optimization Opportunities 1. {opportunity_1} 2. {opportunity_2} --- ## System Health Score: {score}/100 **Breakdown**: - Group Performance (40 pts): {group_perf}/40 - Communication Quality (25 pts): {comm_quality}/25 - Knowledge Transfer (20 pts): {knowledge}/20 - Specialization Maturity (15 pts): {specialization}/15 **Status**: {Excellent/Good/Needs Attention/Critical} --- Report Path: .claude/data/reports/group-monitoring-{date}.md ``` ## Result Presentation **Terminal Output (15-20 lines max)**: ``` +==============================================================+ | FOUR-TIER GROUP MONITORING REPORT | +==============================================================+ System Health: {score}/100 ({status}) Total Tasks: {count} | Avg Quality: {quality}/100 | Success Rate: {success}% GROUP PERFORMANCE: Group 1 (Brain): {rating} | {tasks} tasks | {success}% success Group 2 (Council): {rating} | {decisions} decisions | {accuracy}% accurate Group 3 (Hand): {rating} | {executions} executions | {success}% success Group 4 (Guardian): {rating} | {validations} validations | {pass}% pass rate COMMUNICATION: {comm_success}% success rate | {feedback_count} feedback loops TOP PERFORMERS: 1. {agent_name} ({group}): {performance} 2. {agent_name} ({group}): {performance} 3. {agent_name} ({group}): {performance} TRENDS: Quality {trend_icon} {direction} | Iterations {trend_icon} {direction} 📄 Detailed Report: .claude/data/reports/group-monitoring-{date}.md ⏱️ Execution Time: {time}s ``` **File Report**: Save complete detailed report to `.claude/data/reports/group-monitoring-YYYY-MM-DD.md` ## Notes - Automatically refreshes data from all learning systems - Identifies bottlenecks and improvement opportunities - Tracks specialization emergence over time - Monitors communication effectiveness - **Run regularly** (e.g., after every 10-20 tasks) to track trends - Use insights to optimize group coordination ## Integration This command integrates with: - `lib/group_collaboration_system.py` - Communication tracking - `lib/group_performance_tracker.py` - Performance metrics - `lib/inter_group_knowledge_transfer.py` - Knowledge stats - `lib/group_specialization_learner.py` - Specialization insights - `lib/agent_performance_tracker.py` - Individual agent data - `lib/agent_feedback_system.py` - Feedback effectiveness