Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:00:50 +08:00
commit c5931553a6
106 changed files with 49995 additions and 0 deletions

View File

@@ -0,0 +1,375 @@
---
name: performance-scaling
description: Cross-model performance optimization and scaling configurations for autonomous agents
version: 1.0.0
---
## Overview
This skill provides performance scaling and optimization strategies for autonomous agents across different LLM models, ensuring optimal execution characteristics while maintaining quality standards.
## Model Performance Profiles
### Claude Sonnet 4.5 Performance Profile
```json
{
"model": "claude-sonnet-4.5",
"base_performance": {
"execution_speed": "fast",
"reasoning_depth": "high",
"context_switching": "excellent",
"adaptability": "very_high"
},
"scaling_factors": {
"time_multiplier": 1.0,
"quality_target": 90,
"complexity_handling": 0.9,
"parallel_processing": 1.2
},
"optimization_strategies": [
"context_merging",
"predictive_delegation",
"pattern_weighting",
"adaptive_quality_thresholds"
]
}
```
### Claude Haiku 4.5 Performance Profile
```json
{
"model": "claude-haiku-4.5",
"base_performance": {
"execution_speed": "very_fast",
"reasoning_depth": "medium",
"context_switching": "good",
"adaptability": "high"
},
"scaling_factors": {
"time_multiplier": 0.8,
"quality_target": 88,
"complexity_handling": 1.1,
"parallel_processing": 1.0
},
"optimization_strategies": [
"fast_execution",
"selective_processing",
"efficient_delegation",
"streamlined_quality_checks"
]
}
```
### Claude Opus 4.1 Performance Profile
```json
{
"model": "claude-opus-4.1",
"base_performance": {
"execution_speed": "very_fast",
"reasoning_depth": "very_high",
"context_switching": "excellent",
"adaptability": "maximum"
},
"scaling_factors": {
"time_multiplier": 0.9,
"quality_target": 95,
"complexity_handling": 0.8,
"parallel_processing": 1.4
},
"optimization_strategies": [
"anticipatory_execution",
"enhanced_parallelization",
"predictive_caching",
"advanced_pattern_recognition"
]
}
```
### GLM-4.6 Performance Profile
```json
{
"model": "glm-4.6",
"base_performance": {
"execution_speed": "moderate",
"reasoning_depth": "medium",
"context_switching": "good",
"adaptability": "medium"
},
"scaling_factors": {
"time_multiplier": 1.25,
"quality_target": 88,
"complexity_handling": 1.2,
"parallel_processing": 0.8
},
"optimization_strategies": [
"structured_sequencing",
"explicit_instruction_optimization",
"step_by_step_validation",
"clear_handoff_protocols"
]
}
```
## Performance Scaling Strategies
### Time-Based Scaling
**Execution Time Allocation**:
```javascript
function scaleExecutionTime(baseTime, model, complexity) {
const profiles = {
'claude-sonnet': { multiplier: 1.0, complexity_factor: 0.9 },
'claude-4.5': { multiplier: 0.9, complexity_factor: 0.8 },
'glm-4.6': { multiplier: 1.25, complexity_factor: 1.2 },
'fallback': { multiplier: 1.5, complexity_factor: 1.4 }
};
const profile = profiles[model] || profiles.fallback;
return baseTime * profile.multiplier * (1 + complexity * profile.complexity_factor);
}
```
**Timeout Adjustments**:
- **Claude Sonnet**: Standard timeouts with 10% buffer
- **Claude 4.5**: Reduced timeouts with 5% buffer
- **GLM-4.6**: Extended timeouts with 25% buffer
- **Fallback**: Conservative timeouts with 50% buffer
### Quality Target Scaling
**Model-Specific Quality Targets**:
```javascript
function getQualityTarget(model, taskType) {
const baseTargets = {
'claude-sonnet': { simple: 85, complex: 90, critical: 95 },
'claude-4.5': { simple: 88, complex: 92, critical: 96 },
'glm-4.6': { simple: 82, complex: 88, critical: 92 },
'fallback': { simple: 80, complex: 85, critical: 90 }
};
return baseTargets[model]?.[taskType] || baseTargets.fallback.complex;
}
```
**Quality Assessment Adaptation**:
- **Claude Models**: Emphasize contextual understanding and pattern recognition
- **GLM Models**: Emphasize structured accuracy and procedural correctness
### Resource Scaling
**Memory Management**:
```javascript
function scaleMemoryUsage(model, taskSize) {
const profiles = {
'claude-sonnet': { base_memory: 'medium', scaling_factor: 1.1 },
'claude-4.5': { base_memory: 'medium', scaling_factor: 1.0 },
'glm-4.6': { base_memory: 'high', scaling_factor: 1.3 },
'fallback': { base_memory: 'high', scaling_factor: 1.5 }
};
const profile = profiles[model] || profiles.fallback;
return allocateMemory(profile.base_memory, taskSize * profile.scaling_factor);
}
```
**Concurrent Task Limits**:
- **Claude Sonnet**: 3-4 concurrent tasks
- **Claude 4.5**: 4-5 concurrent tasks
- **GLM-4.6**: 2-3 concurrent tasks
- **Fallback**: 1-2 concurrent tasks
## Adaptive Optimization Algorithms
### Dynamic Performance Adjustment
**Real-Time Performance Monitoring**:
```javascript
function monitorPerformance(model, currentMetrics) {
const baseline = getPerformanceBaseline(model);
const variance = calculateVariance(currentMetrics, baseline);
if (variance > 0.2) {
// Performance deviating significantly from baseline
return adjustPerformanceParameters(model, currentMetrics);
}
return currentMetrics;
}
```
**Automatic Parameter Tuning**:
```javascript
function tuneParameters(model, taskHistory) {
const performance = analyzeTaskPerformance(taskHistory);
const adjustments = calculateOptimalAdjustments(model, performance);
return {
timeout_adjustments: adjustments.timeouts,
quality_thresholds: adjustments.quality,
resource_allocation: adjustments.resources,
delegation_strategy: adjustments.delegation
};
}
```
### Learning-Based Optimization
**Pattern Recognition for Performance**:
```javascript
function learnPerformancePatterns(executionHistory) {
const patterns = {
successful_executions: extractSuccessPatterns(executionHistory),
failed_executions: extractFailurePatterns(executionHistory),
optimization_opportunities: identifyOptimizations(executionHistory)
};
return generatePerformanceRecommendations(patterns);
}
```
**Model-Specific Learning**:
- **Claude Models**: Learn from nuanced patterns and contextual factors
- **GLM Models**: Learn from structured procedures and clear success/failure patterns
## Performance Metrics and KPIs
### Core Performance Indicators
**Execution Metrics**:
- **Task Completion Time**: Time from task start to completion
- **Quality Achievement**: Final quality score vs target
- **Resource Efficiency**: Memory and CPU usage efficiency
- **Error Rate**: Frequency of errors requiring recovery
**Model-Specific KPIs**:
```javascript
const modelKPIs = {
'claude-sonnet': {
'context_switching_efficiency': '>= 90%',
'pattern_recognition_accuracy': '>= 85%',
'adaptive_decision_quality': '>= 88%'
},
'claude-4.5': {
'predictive_accuracy': '>= 80%',
'anticipatory_optimization': '>= 75%',
'enhanced_reasoning_utilization': '>= 90%'
},
'glm-4.6': {
'procedural_accuracy': '>= 95%',
'structured_execution_compliance': '>= 98%',
'explicit_instruction_success': '>= 92%'
}
};
```
### Performance Benchmarking
**Comparative Analysis**:
```javascript
function benchmarkPerformance(model, testSuite) {
const results = runPerformanceTests(model, testSuite);
const baseline = getIndustryBaseline(model);
return {
relative_performance: results.score / baseline.score,
improvement_opportunities: identifyImprovements(results, baseline),
model_strengths: analyzeModelStrengths(results),
optimization_recommendations: generateRecommendations(results)
};
}
```
## Performance Optimization Techniques
### Model-Specific Optimizations
**Claude Sonnet Optimizations**:
1. **Context Merging**: Combine related contexts to reduce switching overhead
2. **Weight-Based Decision Making**: Use historical success patterns for decisions
3. **Progressive Loading**: Load skills progressively based on immediate needs
4. **Adaptive Quality Thresholds**: Adjust quality targets based on task complexity
**Claude 4.5 Optimizations**:
1. **Anticipatory Execution**: Start likely tasks before explicit request
2. **Enhanced Parallelization**: Maximize concurrent task execution
3. **Predictive Caching**: Cache likely-needed resources proactively
4. **Advanced Pattern Matching**: Use complex pattern recognition for optimization
**GLM-4.6 Optimizations**:
1. **Structured Sequencing**: Optimize task order for efficiency
2. **Explicit Instruction Optimization**: Minimize ambiguity in instructions
3. **Step-by-Step Validation**: Validate each step before proceeding
4. **Clear Handoff Protocols**: Ensure clean transitions between tasks
### Universal Optimizations
**Cross-Model Techniques**:
1. **Resource Pooling**: Share resources across compatible tasks
2. **Intelligent Caching**: Cache results based on usage patterns
3. **Batch Processing**: Group similar operations for efficiency
4. **Lazy Loading**: Load resources only when needed
## Implementation Guidelines
### Performance Configuration Loading
```javascript
function loadPerformanceConfiguration(model) {
const baseConfig = getBasePerformanceProfile(model);
const historicalData = getHistoricalPerformanceData(model);
const currentContext = assessCurrentContext();
return mergeAndOptimizeConfiguration(baseConfig, historicalData, currentContext);
}
```
### Runtime Performance Adjustment
```javascript
function adjustRuntimePerformance(currentMetrics, targetProfile) {
const adjustments = calculateNeededAdjustments(currentMetrics, targetProfile);
return {
timeout_adjustments: adjustments.timeouts,
quality_modifications: adjustments.quality,
resource_reallocation: adjustments.resources,
strategy_changes: adjustments.strategy
};
}
```
### Performance Monitoring and Alerting
```javascript
function monitorPerformanceHealth(model, metrics) {
const healthScore = calculatePerformanceHealth(model, metrics);
if (healthScore < 0.8) {
return {
status: 'degraded',
recommendations: generateImprovementActions(model, metrics),
automatic_adjustments: applyAutomaticOptimizations(model, metrics)
};
}
return { status: 'healthy', score: healthScore };
}
```
## Usage Guidelines
### When to Apply Performance Scaling
1. **Task Initialization**: Set performance targets based on model and task type
2. **Mid-Execution Adjustment**: Adapt parameters based on current performance
3. **Resource Optimization**: Scale resource allocation based on availability
4. **Quality-Performance Tradeoffs**: Balance speed vs accuracy based on requirements
### Integration Points
- **Orchestrator Agent**: Use for task planning and resource allocation
- **All Specialized Agents**: Use for model-specific execution optimization
- **Quality Controller**: Use for adaptive quality target setting
- **Background Task Manager**: Use for concurrent task optimization
This skill ensures optimal performance across all supported models while maintaining high quality standards and adapting to varying task requirements.