Initial commit
This commit is contained in:
215
commands/learn/analytics.md
Normal file
215
commands/learn/analytics.md
Normal file
@@ -0,0 +1,215 @@
|
||||
---
|
||||
name: learn:analytics
|
||||
description: Display learning analytics dashboard with pattern progress, skill effectiveness, and trends
|
||||
delegates-to: autonomous-agent:orchestrator
|
||||
---
|
||||
|
||||
# Learning Analytics Dashboard
|
||||
|
||||
Display comprehensive analytics about the autonomous agent's learning progress, including:
|
||||
|
||||
- **Pattern Learning Progress**: Quality trends, learning velocity, improvement rates
|
||||
- **Skill Effectiveness**: Top performing skills, success rates, quality contributions
|
||||
- **Agent Performance**: Reliability scores, efficiency ratings, delegation patterns
|
||||
- **Skill Synergies**: Best skill combinations and their effectiveness
|
||||
- **Prediction System**: Accuracy metrics and model performance
|
||||
- **Cross-Project Learning**: Universal patterns and knowledge transfer
|
||||
- **Learning Insights**: Actionable recommendations and trend analysis
|
||||
|
||||
## Execution
|
||||
|
||||
Generate and display the learning analytics report:
|
||||
|
||||
```bash
|
||||
# Auto-detects plugin path whether in development or installed from marketplace
|
||||
python <plugin_path>/lib/learning_analytics.py show --dir .claude-patterns
|
||||
```
|
||||
|
||||
## Output Format
|
||||
|
||||
The command produces a comprehensive terminal dashboard with:
|
||||
|
||||
1. **Overview Section**: Total patterns, quality scores, success rates
|
||||
2. **Quality Trend Chart**: ASCII visualization of quality progression over time
|
||||
3. **Learning Velocity**: Improvement rates and trajectory analysis
|
||||
4. **Top Performing Skills**: Rankings by success rate and quality contribution
|
||||
5. **Top Performing Agents**: Rankings by reliability and efficiency
|
||||
6. **Skill Synergies**: Best skill combinations discovered
|
||||
7. **Prediction System Status**: Accuracy and model training metrics
|
||||
8. **Cross-Project Learning**: Universal pattern statistics
|
||||
9. **Learning Patterns**: Fastest and slowest learning areas
|
||||
10. **Key Insights**: Actionable recommendations based on data
|
||||
|
||||
## Example Output
|
||||
|
||||
```
|
||||
+===========================================================================+
|
||||
| LEARNING ANALYTICS DASHBOARD - ENHANCED SYSTEM v3.0 |
|
||||
+===========================================================================+
|
||||
|
||||
📊 OVERVIEW
|
||||
---------------------------------------------------------------------------
|
||||
Total Patterns Captured: 156
|
||||
Overall Quality Score: 88.5/100
|
||||
Success Rate: 92.3%
|
||||
Recent Quality: 91.2/100 (+2.7)
|
||||
Activity (Last 7 days): 12 patterns
|
||||
Activity (Last 30 days): 48 patterns
|
||||
|
||||
📈 QUALITY TREND OVER TIME
|
||||
---------------------------------------------------------------------------
|
||||
95.0 | ██████████|
|
||||
| ████████████████|
|
||||
| ████████████████████ |
|
||||
| ████████████████████ |
|
||||
87.5 | ████████████████ |
|
||||
| ████████████ |
|
||||
| ████████ |
|
||||
| ████████ |
|
||||
80.0 |████ |
|
||||
+------------------------------------------------------+
|
||||
106 -> 156
|
||||
|
||||
Trend: IMPROVING
|
||||
|
||||
🚀 LEARNING VELOCITY
|
||||
---------------------------------------------------------------------------
|
||||
Weeks Analyzed: 8
|
||||
Early Average Quality: 85.3/100
|
||||
Recent Average Quality: 91.2/100
|
||||
Total Improvement: +5.9 points
|
||||
Improvement Rate: 0.74 points/week
|
||||
Trajectory: ACCELERATING
|
||||
Acceleration: +0.52 (speeding up!)
|
||||
|
||||
⭐ TOP PERFORMING SKILLS
|
||||
---------------------------------------------------------------------------
|
||||
1. code-analysis Success: 94.3% Quality: 18.5
|
||||
2. quality-standards Success: 92.1% Quality: 17.8
|
||||
3. testing-strategies Success: 89.5% Quality: 16.2
|
||||
4. security-patterns Success: 91.0% Quality: 15.9
|
||||
5. pattern-learning Success: 88.7% Quality: 15.1
|
||||
|
||||
🤖 TOP PERFORMING AGENTS
|
||||
---------------------------------------------------------------------------
|
||||
1. code-analyzer Reliability: 96.9% Efficiency: 1.02
|
||||
2. quality-controller Reliability: 95.2% Efficiency: 0.98
|
||||
3. test-engineer Reliability: 93.5% Efficiency: 0.89
|
||||
4. documentation-generator Reliability: 91.8% Efficiency: 0.95
|
||||
5. frontend-analyzer Reliability: 90.5% Efficiency: 1.05
|
||||
|
||||
🔗 SKILL SYNERGIES (Top Combinations)
|
||||
---------------------------------------------------------------------------
|
||||
1. code-analysis + quality-standards Score: 8.5 Uses: 38
|
||||
Quality: 92.3 Success: 97.8% [HIGHLY_RECOMMENDED]
|
||||
2. code-analysis + security-patterns Score: 7.2 Uses: 28
|
||||
Quality: 91.0 Success: 96.4% [HIGHLY_RECOMMENDED]
|
||||
|
||||
🎯 PREDICTION SYSTEM STATUS
|
||||
---------------------------------------------------------------------------
|
||||
Status: ACTIVE
|
||||
Models Trained: 15 skills
|
||||
Prediction Accuracy: 87.5%
|
||||
[PASS] High accuracy - automated recommendations highly reliable
|
||||
|
||||
🌐 CROSS-PROJECT LEARNING
|
||||
---------------------------------------------------------------------------
|
||||
Status: ACTIVE
|
||||
Universal Patterns: 45
|
||||
Avg Transferability: 82.3%
|
||||
[PASS] Knowledge transfer active - benefiting from other projects
|
||||
|
||||
💡 KEY INSIGHTS
|
||||
---------------------------------------------------------------------------
|
||||
[PASS] Learning is accelerating! Quality improving at 0.74 points/week and speeding up
|
||||
[PASS] Recent performance (91.2) significantly better than historical average (88.5)
|
||||
[PASS] Highly effective skill pair discovered: code-analysis + quality-standards (8.5 synergy score)
|
||||
[PASS] Prediction system highly accurate (87.5%) - trust automated recommendations
|
||||
[PASS] Fastest learning in: refactoring, bug-fix
|
||||
|
||||
+===========================================================================+
|
||||
| Generated: 2025-10-23T14:30:52.123456 |
|
||||
+===========================================================================+
|
||||
```
|
||||
|
||||
## Export Options
|
||||
|
||||
### Export as JSON
|
||||
```bash
|
||||
# Auto-detects plugin path
|
||||
python <plugin_path>/lib/learning_analytics.py export-json --output data/reports/analytics.json --dir .claude-patterns
|
||||
```
|
||||
|
||||
### Export as Markdown
|
||||
```bash
|
||||
# Auto-detects plugin path
|
||||
python <plugin_path>/lib/learning_analytics.py export-md --output data/reports/analytics.md --dir .claude-patterns
|
||||
```
|
||||
|
||||
## Usage Scenarios
|
||||
|
||||
### Daily Standup
|
||||
Review learning progress and identify areas needing attention:
|
||||
```bash
|
||||
/learning-analytics
|
||||
```
|
||||
|
||||
### Weekly Review
|
||||
Export comprehensive report for documentation:
|
||||
```bash
|
||||
# Auto-detects plugin path
|
||||
python <plugin_path>/lib/learning_analytics.py export-md --output weekly_analytics.md
|
||||
```
|
||||
|
||||
### Performance Investigation
|
||||
Analyze why quality might be declining or improving:
|
||||
```bash
|
||||
/learning-analytics
|
||||
# Review Learning Velocity and Learning Patterns sections
|
||||
```
|
||||
|
||||
### Skill Selection Validation
|
||||
Verify which skills and combinations work best:
|
||||
```bash
|
||||
/learning-analytics
|
||||
# Review Top Performing Skills and Skill Synergies sections
|
||||
```
|
||||
|
||||
## Interpretation Guide
|
||||
|
||||
### Quality Scores
|
||||
- **90-100**: Excellent - Optimal performance
|
||||
- **80-89**: Good - Meeting standards
|
||||
- **70-79**: Acceptable - Some improvement needed
|
||||
- **<70**: Needs attention - Review approach
|
||||
|
||||
### Learning Velocity
|
||||
- **Accelerating**: System is learning faster over time (optimal)
|
||||
- **Linear**: Steady improvement at constant rate (good)
|
||||
- **Decelerating**: Improvement slowing down (may need new approaches)
|
||||
|
||||
### Prediction Accuracy
|
||||
- **>85%**: High accuracy - Trust automated recommendations
|
||||
- **70-85%**: Moderate accuracy - System still learning
|
||||
- **<70%**: Low accuracy - Need more training data
|
||||
|
||||
### Skill Synergies
|
||||
- **Score >5**: Highly recommended combination
|
||||
- **Score 2-5**: Recommended combination
|
||||
- **Score <2**: Use with caution
|
||||
|
||||
## Frequency Recommendations
|
||||
|
||||
- **After every 10 patterns**: Quick check of trends
|
||||
- **Weekly**: Full review of all sections
|
||||
- **Monthly**: Deep analysis with exported reports
|
||||
- **After major changes**: Verify impact on learning
|
||||
|
||||
## Notes
|
||||
|
||||
- Analytics require at least 10 patterns for meaningful insights
|
||||
- Learning velocity requires 3+ weeks of data
|
||||
- Prediction accuracy improves with more training data
|
||||
- Cross-project learning activates automatically when enabled
|
||||
- All metrics update in real-time as new patterns are captured
|
||||
---
|
||||
Reference in New Issue
Block a user