Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:00:50 +08:00
commit c5931553a6
106 changed files with 49995 additions and 0 deletions

685
commands/analyze/groups.md Normal file
View File

@@ -0,0 +1,685 @@
---
name: analyze:groups
description: Deep analysis of four-tier group behavior, collaboration patterns, and optimization recommendations
version: 7.0.0
category: analysis
---
# Analyze Groups Command
Perform comprehensive deep analysis of all four agent groups including collaboration patterns, bottlenecks, optimization opportunities, and actionable recommendations for improving group coordination and performance.
## What This Command Does
**Analyzes**:
1. **Group Collaboration Patterns** - How groups work together, communication patterns, handoff quality
2. **Performance Bottlenecks** - Where delays occur, which groups need optimization
3. **Specialization Effectiveness** - Whether groups are specializing appropriately
4. **Knowledge Flow Analysis** - How knowledge transfers between groups
5. **Decision Quality Analysis** - Group 2 decision-making effectiveness
6. **Validation Effectiveness** - Group 4 validation impact on quality
**Delivers**:
- Root cause analysis of performance issues
- Specific optimization recommendations
- Communication improvement strategies
- Specialization guidance
- Actionable next steps
## Execution Steps
### Step 1: Load Comprehensive Data
```python
from lib.group_collaboration_system import get_group_collaboration_stats, analyze_workflow_efficiency
from lib.group_performance_tracker import get_group_performance, compare_groups, analyze_workflow_efficiency as group_workflow
from lib.inter_group_knowledge_transfer import get_knowledge_transfer_stats, get_transfer_effectiveness
from lib.group_specialization_learner import get_specialization_profile, get_recommended_group_for_task, get_learning_insights
from lib.agent_feedback_system import get_feedback_stats
from lib.decision_explainer import get_all_explanations
from lib.proactive_suggester import get_statistics as get_suggestion_stats
# Gather all data for last 100 tasks
collaboration_stats = get_group_collaboration_stats()
workflow_efficiency = analyze_workflow_efficiency()
knowledge_effectiveness = get_transfer_effectiveness()
learning_insights = get_learning_insights()
suggestion_stats = get_suggestion_stats()
```
### Step 2: Analyze Group Collaboration Patterns
```python
def analyze_collaboration_patterns(collab_stats):
"""Identify collaboration patterns and issues"""
patterns_found = []
issues_found = []
# Pattern 1: Sequential Flow (Normal)
if collab_stats['group_1_to_2']['success_rate'] > 0.9 and \
collab_stats['group_2_to_3']['success_rate'] > 0.9 and \
collab_stats['group_3_to_4']['success_rate'] > 0.9:
patterns_found.append({
"pattern": "healthy_sequential_flow",
"description": "Groups collaborate sequentially with high success",
"status": "excellent"
})
# Pattern 2: Feedback Loop Effectiveness
feedback_loops = [
collab_stats.get('group_4_to_1', {}),
collab_stats.get('group_4_to_2', {}),
collab_stats.get('group_4_to_3', {})
]
avg_feedback_effectiveness = sum(loop.get('effectiveness', 0) for loop in feedback_loops) / 3
if avg_feedback_effectiveness < 0.7:
issues_found.append({
"issue": "weak_feedback_loops",
"severity": "medium",
"description": "Group 4 feedback not effectively improving other groups",
"recommendation": "Review feedback quality and actionability"
})
# Pattern 3: Bottleneck Detection
communication_times = {
"G1->G2": collab_stats['group_1_to_2'].get('avg_time_seconds', 0),
"G2->G3": collab_stats['group_2_to_3'].get('avg_time_seconds', 0),
"G3->G4": collab_stats['group_3_to_4'].get('avg_time_seconds', 0)
}
max_time = max(communication_times.values())
for flow, time in communication_times.items():
if time > max_time * 0.7: # More than 70% of max
issues_found.append({
"issue": "communication_bottleneck",
"severity": "high",
"location": flow,
"description": f"Communication delay in {flow}: {time}s",
"recommendation": f"Optimize {flow.split('->')[0]} output preparation"
})
return patterns_found, issues_found
```
### Step 3: Analyze Performance Bottlenecks
```python
def identify_bottlenecks():
"""Identify which groups are performance bottlenecks"""
bottlenecks = []
for group_num in [1, 2, 3, 4]:
perf = get_group_performance(group_num)
# Check success rate
if perf.get('success_rate', 1.0) < 0.8:
bottlenecks.append({
"group": group_num,
"issue": "low_success_rate",
"value": perf['success_rate'],
"severity": "high",
"recommendation": "Review group training and specialization"
})
# Check execution time
if perf.get('avg_execution_time', 0) > 300: # 5 minutes
bottlenecks.append({
"group": group_num,
"issue": "slow_execution",
"value": perf['avg_execution_time'],
"severity": "medium",
"recommendation": "Profile and optimize slow operations"
})
# Check quality output
if perf.get('avg_quality_score', 100) < 75:
bottlenecks.append({
"group": group_num,
"issue": "low_quality_output",
"value": perf['avg_quality_score'],
"severity": "high",
"recommendation": "Improve group capabilities or adjust expectations"
})
return bottlenecks
```
### Step 4: Analyze Specialization Effectiveness
```python
def analyze_specialization():
"""Check if groups are developing appropriate specializations"""
specialization_analysis = {}
for group_num in [1, 2, 3, 4]:
profile = get_specialization_profile(group_num)
specializations = profile.get('specializations', [])
task_count = profile.get('total_tasks', 0)
# Ideal: 3-5 clear specializations after 100+ tasks
if task_count < 50:
status = "insufficient_data"
recommendation = f"Need {50 - task_count} more tasks to identify specializations"
elif len(specializations) == 0:
status = "no_specialization"
recommendation = "Group not developing specializations - may need more diverse tasks"
elif len(specializations) < 3:
status = "emerging"
recommendation = "Specializations emerging - continue diverse task exposure"
elif len(specializations) <= 5:
status = "optimal"
recommendation = "Good specialization balance - maintain current task distribution"
else:
status = "over_specialized"
recommendation = "Too many specializations - may indicate lack of focus"
specialization_analysis[f"Group {group_num}"] = {
"status": status,
"specializations": specializations,
"task_count": task_count,
"recommendation": recommendation
}
return specialization_analysis
```
### Step 5: Analyze Knowledge Flow
```python
def analyze_knowledge_flow(knowledge_stats):
"""Analyze how knowledge flows between groups"""
flow_analysis = {
"total_knowledge": knowledge_stats.get('total_knowledge', 0),
"successful_transfers": knowledge_stats.get('successful_transfers', 0),
"transfer_success_rate": knowledge_stats.get('transfer_success_rate', 0),
"flow_patterns": []
}
# Identify dominant knowledge sources
sources = {}
for transfer in knowledge_stats.get('transfers', []):
source = transfer.get('source_group')
sources[source] = sources.get(source, 0) + 1
# Check if knowledge is distributed or concentrated
if sources:
max_source = max(sources.values())
if max_source > sum(sources.values()) * 0.6:
flow_analysis['flow_patterns'].append({
"pattern": "concentrated_source",
"description": f"Group {max(sources, key=sources.get)} is primary knowledge source ({max_source} items)",
"recommendation": "Encourage knowledge sharing from other groups"
})
else:
flow_analysis['flow_patterns'].append({
"pattern": "distributed_sources",
"description": "Knowledge well-distributed across groups",
"status": "healthy"
})
# Check transfer effectiveness
if flow_analysis['transfer_success_rate'] < 0.7:
flow_analysis['flow_patterns'].append({
"pattern": "low_transfer_effectiveness",
"severity": "medium",
"description": f"Knowledge transfer success rate: {flow_analysis['transfer_success_rate']:.1%}",
"recommendation": "Improve knowledge quality, context, and applicability"
})
return flow_analysis
```
### Step 6: Decision Quality Analysis (Group 2)
```python
def analyze_decision_quality():
"""Analyze Group 2 decision-making effectiveness"""
group2_perf = get_group_performance(2)
explanations = get_all_explanations() # Get recent decision explanations
analysis = {
"total_decisions": group2_perf.get('total_tasks', 0),
"decision_accuracy": group2_perf.get('success_rate', 0),
"avg_confidence": group2_perf.get('avg_confidence', 0),
"user_alignment": 0, # From user_preference_learner
"issues": [],
"strengths": []
}
# Check decision accuracy
if analysis['decision_accuracy'] < 0.85:
analysis['issues'].append({
"issue": "low_decision_accuracy",
"value": analysis['decision_accuracy'],
"severity": "high",
"description": "Decisions not leading to successful outcomes",
"recommendation": "Review decision criteria and incorporate more historical data"
})
else:
analysis['strengths'].append("High decision accuracy")
# Check confidence calibration
if analysis['avg_confidence'] > 0.9 and analysis['decision_accuracy'] < 0.85:
analysis['issues'].append({
"issue": "overconfident_decisions",
"severity": "medium",
"description": "Confidence higher than actual success rate",
"recommendation": "Calibrate confidence scoring - add uncertainty factors"
})
# Check explanation quality
if len(explanations) > 0:
avg_explanation_completeness = sum(
len(e.get('why_chosen', [])) + len(e.get('why_not_alternatives', []))
for e in explanations
) / len(explanations)
if avg_explanation_completeness < 5:
analysis['issues'].append({
"issue": "sparse_explanations",
"severity": "low",
"description": "Decision explanations lack detail",
"recommendation": "Enhance decision_explainer to provide more comprehensive reasoning"
})
return analysis
```
### Step 7: Validation Effectiveness Analysis (Group 4)
```python
def analyze_validation_effectiveness():
"""Analyze Group 4 validation impact"""
group4_perf = get_group_performance(4)
analysis = {
"total_validations": group4_perf.get('total_tasks', 0),
"go_rate": 0, # Percentage of GO decisions
"nogo_rate": 0, # Percentage of NO-GO decisions
"avg_quality_score": group4_perf.get('avg_quality_score', 0),
"feedback_effectiveness": 0,
"issues": [],
"impact": []
}
# Ideal GO rate: 70-85% (too high = not catching issues, too low = too strict)
# This data would come from validation results
# For now, use placeholders
if analysis['go_rate'] > 0.9:
analysis['issues'].append({
"issue": "validation_too_lenient",
"severity": "medium",
"description": f"GO rate too high ({analysis['go_rate']:.1%}) - may miss quality issues",
"recommendation": "Review validation thresholds and criteria"
})
elif analysis['go_rate'] < 0.6:
analysis['issues'].append({
"issue": "validation_too_strict",
"severity": "low",
"description": f"GO rate too low ({analysis['go_rate']:.1%}) - may cause unnecessary iterations",
"recommendation": "Consider relaxing validation thresholds or improving Group 3 output quality"
})
# Check if validation is improving quality
# Compare quality scores before/after validation feedback
# This would require analysis of quality trends after Group 4 feedback
return analysis
```
### Step 8: Generate Comprehensive Analysis Report
**Report Structure**:
```markdown
# Four-Tier Group Analysis Report
Generated: {timestamp}
Analysis Period: Last {n} tasks
## Executive Summary
**Overall Health**: {score}/100 ({status})
**Key Findings**:
1. {finding_1}
2. {finding_2}
3. {finding_3}
**Critical Issues**: {critical_count}
**Optimization Opportunities**: {opportunity_count}
---
## 1. Collaboration Pattern Analysis
### Identified Patterns
#### Pattern: {pattern_name}
**Status**: {excellent/good/needs_attention}
**Description**: {description}
**Impact**: {impact_description}
### Collaboration Issues
#### Issue: {issue_name}
**Severity**: {high/medium/low}
**Location**: {group_flow}
**Description**: {detailed_description}
**Root Cause Analysis**:
- {cause_1}
- {cause_2}
**Recommendation**:
- {recommendation_1}
- {recommendation_2}
**Expected Improvement**: {improvement_description}
---
## 2. Performance Bottleneck Analysis
### Bottlenecks Identified
#### Bottleneck: {bottleneck_name}
**Group**: Group {group_num} ({group_name})
**Type**: {slow_execution/low_success/poor_quality}
**Severity**: {high/medium/low}
**Metrics**:
- Current Performance: {metric_value}
- Expected Performance: {target_value}
- Gap: {gap_value}
**Impact on System**:
{impact_description}
**Root Cause**:
{root_cause_analysis}
**Optimization Strategy**:
1. **Immediate Actions** (Next 1-5 tasks):
- {action_1}
- {action_2}
2. **Short-term Improvements** (Next 10-20 tasks):
- {improvement_1}
- {improvement_2}
3. **Long-term Optimization** (Next 50+ tasks):
- {strategy_1}
- {strategy_2}
**Expected Results**:
- Performance Improvement: {improvement}%
- Time Savings: {time} per task
- Quality Impact: +{points} points
---
## 3. Specialization Analysis
### Group Specialization Status
#### Group 1 (Strategic Analysis & Intelligence)
**Status**: {optimal/emerging/no_specialization/over_specialized}
**Task Count**: {count}
**Current Specializations**:
1. {specialization_1}: {success_rate}% success, {count} tasks
2. {specialization_2}: {success_rate}% success, {count} tasks
3. {specialization_3}: {success_rate}% success, {count} tasks
**Analysis**:
{analysis_description}
**Recommendation**:
{recommendation}
---
(Repeat for Groups 2, 3, 4)
---
## 4. Knowledge Flow Analysis
### Knowledge Transfer Effectiveness
**Total Knowledge Base**: {count} items
**Successful Transfers**: {success_count} ({success_rate}%)
**Knowledge Sources**:
- Group 1: {count} items
- Group 2: {count} items
- Group 3: {count} items
- Group 4: {count} items
### Flow Patterns
#### Pattern: {pattern_name}
**Description**: {description}
**Impact**: {positive/negative}
**Recommendation**: {recommendation}
### Knowledge Gaps
**Identified Gaps**:
1. {gap_description} - Missing knowledge in {area}
2. {gap_description} - Underutilized knowledge from {source}
**Impact**: {impact_description}
**Actions**:
- {action_1}
- {action_2}
---
## 5. Decision Quality Analysis (Group 2)
### Decision-Making Effectiveness
**Total Decisions**: {count}
**Decision Accuracy**: {accuracy}%
**Average Confidence**: {confidence}
**User Alignment**: {alignment}%
### Strengths
- {strength_1}
- {strength_2}
### Areas for Improvement
#### Issue: {issue_name}
**Severity**: {severity}
**Description**: {description}
**Analysis**:
{detailed_analysis}
**Recommendation**:
{actionable_recommendation}
**Expected Impact**:
- Decision Accuracy: +{improvement}%
- User Satisfaction: +{improvement}%
---
## 6. Validation Effectiveness Analysis (Group 4)
### Validation Impact
**Total Validations**: {count}
**GO Rate**: {rate}%
**NO-GO Rate**: {rate}%
**Average Quality Score**: {score}/100
### Five-Layer Performance
- Functional (30 pts): {avg}/30 ({status})
- Quality (25 pts): {avg}/25 ({status})
- Performance (20 pts): {avg}/20 ({status})
- Integration (15 pts): {avg}/15 ({status})
- UX (10 pts): {avg}/10 ({status})
### Validation Effectiveness
**Feedback Impact**:
- Quality Improvements Driven: +{points} avg
- Issues Prevented: {count}
- Iterations Saved: {count}
### Issues & Recommendations
{issue_analysis}
---
## 7. Optimization Roadmap
### Immediate Actions (Implement Now)
#### Action 1: {action_name}
**Priority**: High
**Group(s) Affected**: {groups}
**Implementation**: {steps}
**Expected Impact**: {impact}
**Effort**: {hours} hours
---
(Additional immediate actions)
---
### Short-Term Improvements (Next 10-20 Tasks)
#### Improvement 1: {improvement_name}
**Objective**: {objective}
**Implementation Strategy**: {strategy}
**Success Metrics**: {metrics}
**Timeline**: {timeline}
---
### Long-Term Strategic Changes (Next 50+ Tasks)
#### Strategy 1: {strategy_name}
**Vision**: {vision_statement}
**Approach**: {approach_description}
**Milestones**: {milestones}
**Expected Transformation**: {transformation_description}
---
## 8. Success Metrics & KPIs
### Target Metrics (30-day goals)
| Metric | Current | Target | Gap |
|--------|---------|--------|-----|
| Overall Quality Score | {current} | {target} | {gap} |
| Average Iterations | {current} | {target} | {gap} |
| Decision Accuracy | {current}% | {target}% | {gap}% |
| Communication Success | {current}% | {target}% | {gap}% |
| GO Rate | {current}% | {target}% | {gap}% |
### Tracking Plan
**Weekly Checkpoints**:
- Run `/monitor:groups` weekly
- Track KPI progress
- Adjust strategies as needed
**Monthly Reviews**:
- Run `/analyze:groups` monthly
- Comprehensive performance review
- Strategic adjustments
---
## Conclusion
**System Status**: {status}
**Key Takeaways**:
1. {takeaway_1}
2. {takeaway_2}
3. {takeaway_3}
**Next Steps**:
1. {next_step_1}
2. {next_step_2}
3. {next_step_3}
**Confidence in Recommendations**: {confidence}%
---
Report Path: .claude/data/reports/group-analysis-{date}.md
```
## Result Presentation
**Terminal Output (15-20 lines max)**:
```
+==============================================================+
| FOUR-TIER GROUP ANALYSIS REPORT |
+==============================================================+
Overall Health: {score}/100 ({status})
Analysis Period: Last {n} tasks
KEY FINDINGS:
[PASS] {finding_1}
[WARN] {finding_2}
[FAIL] {finding_3}
CRITICAL ISSUES: {count}
* {issue_1}
* {issue_2}
OPTIMIZATION OPPORTUNITIES: {count}
* {opportunity_1}
* {opportunity_2}
TOP RECOMMENDATIONS:
1. [{priority}] {recommendation_1}
2. [{priority}] {recommendation_2}
📄 Detailed Analysis: .claude/data/reports/group-analysis-{date}.md
⏱️ Execution Time: {time}s
```
**File Report**: Save complete analysis to `.claude/data/reports/group-analysis-YYYY-MM-DD.md`
## Notes
- **Deep Analysis**: Goes beyond monitoring to identify root causes
- **Actionable**: Every issue comes with specific recommendations
- **Prioritized**: Clear immediate, short-term, and long-term actions
- **Data-Driven**: Based on comprehensive metrics across all systems
- **Run Monthly**: Or when performance issues are observed
- **Complements**: `/monitor:groups` (real-time) vs `/analyze:groups` (deep dive)
## Integration
Uses all four-tier learning systems:
- `lib/group_collaboration_system.py`
- `lib/group_performance_tracker.py`
- `lib/inter_group_knowledge_transfer.py`
- `lib/group_specialization_learner.py`
- `lib/agent_performance_tracker.py`
- `lib/agent_feedback_system.py`
- `lib/decision_explainer.py`
- `lib/proactive_suggester.py`