21 KiB
Custom Tools
Build and integrate custom tools to extend Claude Agent SDK functionality
Custom tools allow you to extend Claude Code's capabilities with your own functionality through in-process MCP servers, enabling Claude to interact with external services, APIs, or perform specialized operations.
Creating Custom Tools
Use the createSdkMcpServer and tool helper functions to define type-safe custom tools:
const customServer = createSdkMcpServer({
name: "my-custom-tools",
version: "1.0.0",
tools: [
tool(
"get_weather",
"Get current weather for a location",
{
location: z.string().describe("City name or coordinates"),
units: z.enum(["celsius", "fahrenheit"]).default("celsius").describe("Temperature units")
},
async (args) => {
// Call weather API
const response = await fetch(
`https://api.weather.com/v1/current?q=${args.location}&units=${args.units}`
);
const data = await response.json();
return {
content: [{
type: "text",
text: `Temperature: ${data.temp}°\nConditions: ${data.conditions}\nHumidity: ${data.humidity}%`
}]
};
}
)
]
});
from claude_agent_sdk import tool, create_sdk_mcp_server, ClaudeSDKClient, ClaudeAgentOptions
from typing import Any
import aiohttp
# Define a custom tool using the @tool decorator
@tool("get_weather", "Get current weather for a location", {"location": str, "units": str})
async def get_weather(args: dict[str, Any]) -> dict[str, Any]:
# Call weather API
units = args.get('units', 'celsius')
async with aiohttp.ClientSession() as session:
async with session.get(
f"https://api.weather.com/v1/current?q={args['location']}&units={units}"
) as response:
data = await response.json()
return {
"content": [{
"type": "text",
"text": f"Temperature: {data['temp']}°\nConditions: {data['conditions']}\nHumidity: {data['humidity']}%"
}]
}
# Create an SDK MCP server with the custom tool
custom_server = create_sdk_mcp_server(
name="my-custom-tools",
version="1.0.0",
tools=[get_weather] # Pass the decorated function
)
Using Custom Tools
Pass the custom server to the query function via the mcpServers option as a dictionary/object.
Important: Custom MCP tools require streaming input mode. You must use an
async generator/iterable for the prompt parameter - a simple string will not
work with MCP servers.
Tool Name Format
When MCP tools are exposed to Claude, their names follow a specific format:
- Pattern:
mcp__{server_name}__{tool_name} - Example: A tool named
get_weatherin servermy-custom-toolsbecomesmcp__my-custom-tools__get_weather
Configuring Allowed Tools
You can control which tools Claude can use via the allowedTools option:
async function* generateMessages() {
yield {
type: "user",
message: {
content: "What's the weather in San Francisco?"
}
};
}
for await (const message of query({
prompt: generateMessages(), // Use async generator for streaming input
options: {
mcpServers: {
"my-custom-tools": customServer // Pass as object/dictionary, not array
},
// Optionally specify which tools Claude can use
allowedTools: [
"mcp__my-custom-tools__get_weather", // Allow the weather tool
// Add other tools as needed
],
maxTurns: 3
}
})) {
if (message.type === "result" && message.subtype === "success") {
console.log(message.result);
}
}
from claude_agent_sdk import ClaudeSDKClient, ClaudeAgentOptions
import asyncio
# Use the custom tools with Claude
options = ClaudeAgentOptions(
mcp_servers={"my-custom-tools": custom_server},
allowed_tools=[
"mcp__my-custom-tools__get_weather", # Allow the weather tool
# Add other tools as needed
]
)
async def main():
async with ClaudeSDKClient(options=options) as client:
await client.query("What's the weather in San Francisco?")
# Extract and print response
async for msg in client.receive_response():
print(msg)
asyncio.run(main())
Multiple Tools Example
When your MCP server has multiple tools, you can selectively allow them:
const multiToolServer = createSdkMcpServer({
name: "utilities",
version: "1.0.0",
tools: [
tool("calculate", "Perform calculations", { /* ... */ }, async (args) => { /* ... */ }),
tool("translate", "Translate text", { /* ... */ }, async (args) => { /* ... */ }),
tool("search_web", "Search the web", { /* ... */ }, async (args) => { /* ... */ })
]
});
// Allow only specific tools with streaming input
async function* generateMessages() {
yield {
type: "user",
message: {
content: "Calculate 5 + 3 and translate 'hello' to Spanish"
}
};
}
for await (const message of query({
prompt: generateMessages(), // Use async generator for streaming input
options: {
mcpServers: {
utilities: multiToolServer
},
allowedTools: [
"mcp__utilities__calculate", // Allow calculator
"mcp__utilities__translate", // Allow translator
// "mcp__utilities__search_web" is NOT allowed
]
}
})) {
// Process messages
}
from claude_agent_sdk import ClaudeSDKClient, ClaudeAgentOptions, tool, create_sdk_mcp_server
from typing import Any
import asyncio
# Define multiple tools using the @tool decorator
@tool("calculate", "Perform calculations", {"expression": str})
async def calculate(args: dict[str, Any]) -> dict[str, Any]:
result = eval(args["expression"]) # Use safe eval in production
return {"content": [{"type": "text", "text": f"Result: {result}"}]}
@tool("translate", "Translate text", {"text": str, "target_lang": str})
async def translate(args: dict[str, Any]) -> dict[str, Any]:
# Translation logic here
return {"content": [{"type": "text", "text": f"Translated: {args['text']}"}]}
@tool("search_web", "Search the web", {"query": str})
async def search_web(args: dict[str, Any]) -> dict[str, Any]:
# Search logic here
return {"content": [{"type": "text", "text": f"Search results for: {args['query']}"}]}
multi_tool_server = create_sdk_mcp_server(
name="utilities",
version="1.0.0",
tools=[calculate, translate, search_web] # Pass decorated functions
)
# Allow only specific tools with streaming input
async def message_generator():
yield {
"type": "user",
"message": {
"role": "user",
"content": "Calculate 5 + 3 and translate 'hello' to Spanish"
}
}
async for message in query(
prompt=message_generator(), # Use async generator for streaming input
options=ClaudeAgentOptions(
mcp_servers={"utilities": multi_tool_server},
allowed_tools=[
"mcp__utilities__calculate", # Allow calculator
"mcp__utilities__translate", # Allow translator
# "mcp__utilities__search_web" is NOT allowed
]
)
):
if hasattr(message, 'result'):
print(message.result)
Type Safety with Python
The @tool decorator supports various schema definition approaches for type safety:
tool(
"process_data",
"Process structured data with type safety",
{
// Zod schema defines both runtime validation and TypeScript types
data: z.object({
name: z.string(),
age: z.number().min(0).max(150),
email: z.string().email(),
preferences: z.array(z.string()).optional()
}),
format: z.enum(["json", "csv", "xml"]).default("json")
},
async (args) => {
// args is fully typed based on the schema
// TypeScript knows: args.data.name is string, args.data.age is number, etc.
console.log(`Processing ${args.data.name}'s data as ${args.format}`);
// Your processing logic here
return {
content: [{
type: "text",
text: `Processed data for ${args.data.name}`
}]
};
}
)
from typing import Any
# Simple type mapping - recommended for most cases
@tool(
"process_data",
"Process structured data with type safety",
{
"name": str,
"age": int,
"email": str,
"preferences": list # Optional parameters can be handled in the function
}
)
async def process_data(args: dict[str, Any]) -> dict[str, Any]:
# Access arguments with type hints for IDE support
name = args["name"]
age = args["age"]
email = args["email"]
preferences = args.get("preferences", [])
print(f"Processing {name}'s data (age: {age})")
return {
"content": [{
"type": "text",
"text": f"Processed data for {name}"
}]
}
# For more complex schemas, you can use JSON Schema format
@tool(
"advanced_process",
"Process data with advanced validation",
{
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer", "minimum": 0, "maximum": 150},
"email": {"type": "string", "format": "email"},
"format": {"type": "string", "enum": ["json", "csv", "xml"], "default": "json"}
},
"required": ["name", "age", "email"]
}
)
async def advanced_process(args: dict[str, Any]) -> dict[str, Any]:
# Process with advanced schema validation
return {
"content": [{
"type": "text",
"text": f"Advanced processing for {args['name']}"
}]
}
Error Handling
Handle errors gracefully to provide meaningful feedback:
tool(
"fetch_data",
"Fetch data from an API",
{
endpoint: z.string().url().describe("API endpoint URL")
},
async (args) => {
try {
const response = await fetch(args.endpoint);
if (!response.ok) {
return {
content: [{
type: "text",
text: `API error: ${response.status} ${response.statusText}`
}]
};
}
const data = await response.json();
return {
content: [{
type: "text",
text: JSON.stringify(data, null, 2)
}]
};
} catch (error) {
return {
content: [{
type: "text",
text: `Failed to fetch data: ${error.message}`
}]
};
}
}
)
import json
import aiohttp
from typing import Any
@tool(
"fetch_data",
"Fetch data from an API",
{"endpoint": str} # Simple schema
)
async def fetch_data(args: dict[str, Any]) -> dict[str, Any]:
try:
async with aiohttp.ClientSession() as session:
async with session.get(args["endpoint"]) as response:
if response.status != 200:
return {
"content": [{
"type": "text",
"text": f"API error: {response.status} {response.reason}"
}]
}
data = await response.json()
return {
"content": [{
"type": "text",
"text": json.dumps(data, indent=2)
}]
}
except Exception as e:
return {
"content": [{
"type": "text",
"text": f"Failed to fetch data: {str(e)}"
}]
}
Example Tools
Database Query Tool
const databaseServer = createSdkMcpServer({
name: "database-tools",
version: "1.0.0",
tools: [
tool(
"query_database",
"Execute a database query",
{
query: z.string().describe("SQL query to execute"),
params: z.array(z.any()).optional().describe("Query parameters")
},
async (args) => {
const results = await db.query(args.query, args.params || []);
return {
content: [{
type: "text",
text: `Found ${results.length} rows:\n${JSON.stringify(results, null, 2)}`
}]
};
}
)
]
});
from typing import Any
import json
@tool(
"query_database",
"Execute a database query",
{"query": str, "params": list} # Simple schema with list type
)
async def query_database(args: dict[str, Any]) -> dict[str, Any]:
results = await db.query(args["query"], args.get("params", []))
return {
"content": [{
"type": "text",
"text": f"Found {len(results)} rows:\n{json.dumps(results, indent=2)}"
}]
}
database_server = create_sdk_mcp_server(
name="database-tools",
version="1.0.0",
tools=[query_database] # Pass the decorated function
)
API Gateway Tool
const apiGatewayServer = createSdkMcpServer({
name: "api-gateway",
version: "1.0.0",
tools: [
tool(
"api_request",
"Make authenticated API requests to external services",
{
service: z.enum(["stripe", "github", "openai", "slack"]).describe("Service to call"),
endpoint: z.string().describe("API endpoint path"),
method: z.enum(["GET", "POST", "PUT", "DELETE"]).describe("HTTP method"),
body: z.record(z.any()).optional().describe("Request body"),
query: z.record(z.string()).optional().describe("Query parameters")
},
async (args) => {
const config = {
stripe: { baseUrl: "<https://api.stripe.com/v1>", key: process.env.STRIPE_KEY },
github: { baseUrl: "<https://api.github.com>", key: process.env.GITHUB_TOKEN },
openai: { baseUrl: "<https://api.openai.com/v1>", key: process.env.OPENAI_KEY },
slack: { baseUrl: "<https://slack.com/api>", key: process.env.SLACK_TOKEN }
};
const { baseUrl, key } = config[args.service];
const url = new URL(`${baseUrl}${args.endpoint}`);
if (args.query) {
Object.entries(args.query).forEach(([k, v]) => url.searchParams.set(k, v));
}
const response = await fetch(url, {
method: args.method,
headers: { Authorization: `Bearer ${key}`, "Content-Type": "application/json" },
body: args.body ? JSON.stringify(args.body) : undefined
});
const data = await response.json();
return {
content: [{
type: "text",
text: JSON.stringify(data, null, 2)
}]
};
}
)
]
});
import os
import json
import aiohttp
from typing import Any
# For complex schemas with enums, use JSON Schema format
@tool(
"api_request",
"Make authenticated API requests to external services",
{
"type": "object",
"properties": {
"service": {"type": "string", "enum": ["stripe", "github", "openai", "slack"]},
"endpoint": {"type": "string"},
"method": {"type": "string", "enum": ["GET", "POST", "PUT", "DELETE"]},
"body": {"type": "object"},
"query": {"type": "object"}
},
"required": ["service", "endpoint", "method"]
}
)
async def api_request(args: dict[str, Any]) -> dict[str, Any]:
config = {
"stripe": {"base_url": "<https://api.stripe.com/v1>", "key": os.environ["STRIPE_KEY"]},
"github": {"base_url": "<https://api.github.com>", "key": os.environ["GITHUB_TOKEN"]},
"openai": {"base_url": "<https://api.openai.com/v1>", "key": os.environ["OPENAI_KEY"]},
"slack": {"base_url": "<https://slack.com/api>", "key": os.environ["SLACK_TOKEN"]}
}
service_config = config[args["service"]]
url = f"{service_config['base_url']}{args['endpoint']}"
if args.get("query"):
params = "&".join([f"{k}={v}" for k, v in args["query"].items()])
url += f"?{params}"
headers = {"Authorization": f"Bearer {service_config['key']}", "Content-Type": "application/json"}
async with aiohttp.ClientSession() as session:
async with session.request(
args["method"], url, headers=headers, json=args.get("body")
) as response:
data = await response.json()
return {
"content": [{
"type": "text",
"text": json.dumps(data, indent=2)
}]
}
api_gateway_server = create_sdk_mcp_server(
name="api-gateway",
version="1.0.0",
tools=[api_request] # Pass the decorated function
)
Calculator Tool
const calculatorServer = createSdkMcpServer({
name: "calculator",
version: "1.0.0",
tools: [
tool(
"calculate",
"Perform mathematical calculations",
{
expression: z.string().describe("Mathematical expression to evaluate"),
precision: z.number().optional().default(2).describe("Decimal precision")
},
async (args) => {
try {
// Use a safe math evaluation library in production
const result = eval(args.expression); // Example only!
const formatted = Number(result).toFixed(args.precision);
return {
content: [{
type: "text",
text: `${args.expression} = ${formatted}`
}]
};
} catch (error) {
return {
content: [{
type: "text",
text: `Error: Invalid expression - ${error.message}`
}]
};
}
}
),
tool(
"compound_interest",
"Calculate compound interest for an investment",
{
principal: z.number().positive().describe("Initial investment amount"),
rate: z.number().describe("Annual interest rate (as decimal, e.g., 0.05 for 5%)"),
time: z.number().positive().describe("Investment period in years"),
n: z.number().positive().default(12).describe("Compounding frequency per year")
},
async (args) => {
const amount = args.principal * Math.pow(1 + args.rate / args.n, args.n * args.time);
const interest = amount - args.principal;
return {
content: [{
type: "text",
text: `Investment Analysis:\n` +
`Principal: $${args.principal.toFixed(2)}\n` +
`Rate: ${(args.rate * 100).toFixed(2)}%\n` +
`Time: ${args.time} years\n` +
`Compounding: ${args.n} times per year\n\n` +
`Final Amount: $${amount.toFixed(2)}\n` +
`Interest Earned: $${interest.toFixed(2)}\n` +
`Return: ${((interest / args.principal) * 100).toFixed(2)}%`
}]
};
}
)
]
});
import math
from typing import Any
@tool(
"calculate",
"Perform mathematical calculations",
{"expression": str, "precision": int} # Simple schema
)
async def calculate(args: dict[str, Any]) -> dict[str, Any]:
try:
# Use a safe math evaluation library in production
result = eval(args["expression"], {"__builtins__": {}})
precision = args.get("precision", 2)
formatted = round(result, precision)
return {
"content": [{
"type": "text",
"text": f"{args['expression']} = {formatted}"
}]
}
except Exception as e:
return {
"content": [{
"type": "text",
"text": f"Error: Invalid expression - {str(e)}"
}]
}
@tool(
"compound_interest",
"Calculate compound interest for an investment",
{"principal": float, "rate": float, "time": float, "n": int}
)
async def compound_interest(args: dict[str, Any]) -> dict[str, Any]:
principal = args["principal"]
rate = args["rate"]
time = args["time"]
n = args.get("n", 12)
amount = principal * (1 + rate / n) ** (n * time)
interest = amount - principal
return {
"content": [{
"type": "text",
"text": f"""Investment Analysis:
Principal: ${principal:.2f}
Rate: {rate * 100:.2f}%
Time: {time} years
Compounding: {n} times per year
Final Amount: ${amount:.2f}
Interest Earned: ${interest:.2f}
Return: {(interest / principal) * 100:.2f}%"""
}]
}
calculator_server = create_sdk_mcp_server(
name="calculator",
version="1.0.0",
tools=[calculate, compound_interest] # Pass decorated functions
)